Publication:
Balanced and strongly balanced 4-kite designs

dc.contributor.coauthorGionfriddo, Mario
dc.contributor.coauthorMilazzo, Lorenzo
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorKüçükçifçi, Selda
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mathematics
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokid105252
dc.date.accessioned2024-11-09T23:27:55Z
dc.date.issued2013
dc.description.abstractA G-design is called balanced if the degree of each vertex x is a constant. A G-design is called strongly balanced if for every i = 1, 2, ⋯, h, there exists a constant Ci such that dAi(x)= Ci for every vertex x, where AiS are the orbits of the automorphism group of G on its vertex-set and dAi(x) of a vertex is the number of blocks of containing x as an element of Ai. We say that a G-design is simply balanced if it is balanced, but not strongly balanced. In this paper we determine the spectrum of simply balanced and strongly balanced 4-kite designs.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.volume91
dc.identifier.doiN/A
dc.identifier.issn0315-3681
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84878150050&partnerID=40&md5=e3ca3dbf3f8b97ac81d700070f55cecb
dc.identifier.quartileQ4
dc.identifier.scopus2-s2.0-84878150050
dc.identifier.uriN/A
dc.identifier.urihttps://hdl.handle.net/20.500.14288/11786
dc.identifier.wos320892500012
dc.keywords4-kite
dc.keywordsBalanced
dc.keywordsG-design
dc.keywordsStrongly balanced
dc.languageEnglish
dc.publisherUtilitas Mathematica Publishing
dc.sourceUtilitas Mathematica
dc.subjectMathematics
dc.subjectApplied mathematics
dc.subjectStatistics
dc.subjectprobability
dc.titleBalanced and strongly balanced 4-kite designs
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-4954-3116
local.contributor.kuauthorKüçükçifçi, Selda
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe

Files