Publication:
Explainable AI-aided feature selection and model reduction for DRL-based V2X resource allocation

dc.contributor.coauthorAbdallah, Asmaa
dc.contributor.coauthorCelik, Abdulkadir
dc.contributor.coauthorEltawil, Ahmed M.
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorKhan, Nasir
dc.contributor.kuauthorErgen, Sinem Çöleri
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2025-05-22T10:32:16Z
dc.date.available2025-05-22
dc.date.issued2025
dc.description.abstractArtificial intelligence (AI) is expected to significantly enhance radio resource management (RRM) in sixth-generation (6G) networks. However, the lack of explainability in complex deep learning (DL) models poses a challenge for practical implementation. This paper proposes a novel explainable AI (XAI)-based framework for feature selection and model complexity reduction in a model-agnostic manner. Applied to a multi-agent deep reinforcement learning (MADRL) setting, our approach addresses the joint sub-band assignment and power allocation problem in cellular vehicle-to-everything (V2X) communications. We propose a novel two-stage systematic explainability framework leveraging feature relevance-oriented XAI to simplify the DRL agents. While the former stage generates a state feature importance ranking of the trained models using Shapley additive explanations (SHAP)-based importance scores, the latter stage exploits these importance-based rankings to simplify the state space of the agents by removing the least important features from the model’s input. Simulation results demonstrate that the XAI-assisted methodology achieves ~97% of the original MADRL sum-rate performance while reducing optimal state features by ~28%, average training time by ~11%, and trainable weight parameters by ~46% in a network with eight vehicular pairs.
dc.description.fulltextNo
dc.description.harvestedfromManual
dc.description.indexedbyScopus
dc.description.openaccess
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipTÜBİTAK (no. 119C058)
dc.description.sponsorshipFord Otosan
dc.identifier.doi10.1109/TCOMM.2025.3554655
dc.identifier.eissn1558-0857
dc.identifier.embargoNo
dc.identifier.issn0090-6778
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-105001518095
dc.identifier.urihttps://hdl.handle.net/20.500.14288/29164
dc.identifier.urihttps://doi.org/10.1109/TCOMM.2025.3554655
dc.keywordsExplainable AI (XAI)
dc.keywordsDeep reinforcement learning (DRL)
dc.keywordsVehicle-to-everything (V2X) communications
dc.keywordsShort-packet transmission
dc.keywordsUltra-reliable and low-latency communications (URLLC)
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofIEEE Transactions on Communications
dc.titleExplainable AI-aided feature selection and model reduction for DRL-based V2X resource allocation
dc.typeJournal Article
dspace.entity.typePublication
person.familyNameKhan
person.familyNameErgen
person.givenNameNasir
person.givenNameSinem Çöleri
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files