Publication:
Predicting path loss distributions of a wireless communication system for multiple base station altitudes from satellite images

dc.contributor.coauthorGüntürk, Bahadır K.
dc.contributor.coauthorAteş, Hasan F.
dc.contributor.coauthorBaykaş, Tunçer
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorShoer, İbrahim
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-12-29T09:36:00Z
dc.date.issued2022
dc.description.abstractIt is expected that unmanned aerial vehicles (UAVs) will play a vital role in future communication systems. Optimum positioning of UAVs, serving as base stations, can be done through extensive field measurements or ray tracing simulations when the 3D model of the region of interest is available. In this paper, we present an alternative approach to optimize UAV base station altitude for a region. The approach is based on deep learning;specifically, a 2D satellite image of the target region is input to a deep neural network to predict path loss distributions for different UAV altitudes. The neural network is designed and trained to produce multiple path loss distributions in a single inference;thus, it is not necessary to train a separate network for each altitude.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorsThis work was supported by TUBITAK Grant 215E324.
dc.identifier.doi10.1109/ICIP46576.2022.9897467
dc.identifier.isbn978-1-6654-9620-9
dc.identifier.issn1522-4880
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85146729305
dc.identifier.urihttps://doi.org/10.1109/ICIP46576.2022.9897467
dc.identifier.urihttps://hdl.handle.net/20.500.14288/21890
dc.identifier.wos1058109502113
dc.keywordsConvolutional neural networks
dc.keywordsDeep learning
dc.keywordsPath loss estimation
dc.keywordsUAV networks
dc.languageen
dc.publisherIEEE
dc.relation.grantnoTUBITAK [215E324]
dc.source2022 IEEE International Conference on Image Processing, ICIP
dc.subjectComputer science
dc.subjectArtificial intelligence
dc.subjectEngineering
dc.subjectElectrical and electronic
dc.titlePredicting path loss distributions of a wireless communication system for multiple base station altitudes from satellite images
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.kuauthorShoer, İbrahim
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files