Publication:
A stochastic representation for mean curvature type geometric flows

dc.contributor.coauthorTouzi, N.
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorSoner, Halil Mete
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mathematics
dc.contributor.schoolcollegeinstituteCollege of Administrative Sciences and Economics
dc.date.accessioned2024-11-09T13:56:19Z
dc.date.issued2003
dc.description.abstractA smooth solution {Gamma(t)}(tis an element of[0,T]) subset of R-d of a parabolic geometric flow is characterized as the reachability set of a stochastic target problem. In this control problem the controller tries to steer the state process into a given deterministic set T with probability one. The reachability set, V(t), for the target problem is the set of all initial data x from which the state process X-X(v)(t) is an element of T for some control process v. This representation is proved by studying the squared distance function to Gamma(t). For the codimension k mean curvature flow, the state process is dX(t) = root2P dW(t), where W(t) is a d-dimensional Brownian motion, and the control P is any projection matrix onto a (d - k)-dimensional plane. Smooth solutions of the inverse mean curvature flow and a discussion of non smooth solutions are also given.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue1
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipN/A
dc.description.versionPublisher version
dc.description.volume59
dc.formatpdf
dc.identifier.doi10.1214/aop/1055425773
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR00464
dc.identifier.issn0091-1798
dc.identifier.linkhttps://doi.org/10.1214/aop/1055425773
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-78649704657
dc.identifier.urihttps://hdl.handle.net/20.500.14288/4057
dc.identifier.wos284592200011
dc.keywordsGeometric flows
dc.keywordsCodimension -K Mean curvature flow
dc.keywordsInverse mean curvature flow
dc.keywordsStochastic target problem
dc.keywordsViscosity solutions
dc.keywordsPlane-curves
dc.keywordsEquations
dc.keywordsSet
dc.keywordsConstraints
dc.keywordsMotion
dc.languageEnglish
dc.publisherInstitute of Mathematical Statistics (IMS)
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/557
dc.sourceAnnals of Probability
dc.subjectMathematics
dc.subjectStatistics and probability
dc.titleA stochastic representation for mean curvature type geometric flows
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorSoner, Halil Mete
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
557.pdf
Size:
175.8 KB
Format:
Adobe Portable Document Format