Publication: ML-augmented Ti-based microrobotic stents
| dc.contributor.department | Department of Mechanical Engineering | |
| dc.contributor.department | KUIS AI (Koç University & İş Bank Artificial Intelligence Center) | |
| dc.contributor.department | KUTTAM (Koç University Research Center for Translational Medicine) | |
| dc.contributor.department | KUAR (KU Arçelik Research Center for Creative Industries) | |
| dc.contributor.kuauthor | Choukri, Abdullah Ahmed | |
| dc.contributor.kuauthor | Taşoğlu, Savaş | |
| dc.contributor.schoolcollegeinstitute | College of Engineering | |
| dc.contributor.schoolcollegeinstitute | Research Center | |
| dc.date.accessioned | 2026-01-16T08:46:28Z | |
| dc.date.available | 2026-01-16 | |
| dc.date.issued | 2025 | |
| dc.description.abstract | The integration of microrobotic stents into biomedical applications has the potential to revolutionize invasive procedures by enabling precise drug delivery, imaging, and vascular interventions. These interventions demand alloys with high radial stiffness for structural integrity and low density for biocompatibility. We developed a machine learning (ML)-finite element analysis (FEA) framework to optimize titanium (Ti)-based and Ti-based high-entropy alloys (Ti-HEAs) compositions using a curated database of 238 alloys. Gaussian process regression (GPR) is trained on FEA-simulated radial stiffness and constrained optimization (interior-point, sequential quadratic programming (SQP), active-set) identified high-performance candidates. The interior-point algorithm yielded the highest stiffness (483.54 kN/m) with balanced composition (Ti: 76.29 at%, Nb: 6.88%, Zr: 7.34%, Ta: 7.31%), outperforming the dataset maximum (TiSn 20, 472.49 kN/m) by 2.32% and Ti-6Al-4 V (368.96 kN/m) by 31%. All algorithms converged to at least 469 kN/m despite compositional diversity, confirming robustness. The framework enables rapid, physics-informed alloy design for next-generation biomedical microrobotics. | |
| dc.description.fulltext | No | |
| dc.description.harvestedfrom | Manual | |
| dc.description.indexedby | WOS | |
| dc.description.indexedby | Scopus | |
| dc.description.publisherscope | International | |
| dc.description.readpublish | N/A | |
| dc.description.sponsoredbyTubitakEu | TÜBİTAK | |
| dc.description.sponsorship | Science Academy's Young Scientist Awards Program (BAGEP); Bilim Kahramanlari Dernegi; Outstanding Young Scientists Awards (GEBIdot;P); Trkiye Bilimsel ve Teknolojik Arascedil;tirma Kurumu [123S582, 123Z050] | |
| dc.identifier.doi | 10.1002/adts.202502105 | |
| dc.identifier.eissn | 2513-0390 | |
| dc.identifier.embargo | No | |
| dc.identifier.grantno | 123S582; 123Z050 | |
| dc.identifier.quartile | Q2 | |
| dc.identifier.scopus | 2-s2.0-105025029021 | |
| dc.identifier.uri | https://doi.org/10.1002/adts.202502105 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14288/32091 | |
| dc.identifier.wos | 001640585000001 | |
| dc.keywords | Finite element analysis (FEA) | |
| dc.keywords | Machine learning optimization | |
| dc.keywords | Material property prediction | |
| dc.keywords | Microrobotic stents | |
| dc.keywords | Titanium alloys | |
| dc.language.iso | eng | |
| dc.publisher | Wiley-VCH GmbH | |
| dc.relation.affiliation | Koç University | |
| dc.relation.collection | Koç University Institutional Repository | |
| dc.relation.ispartof | Advanced Theory and Simulations | |
| dc.relation.openaccess | No | |
| dc.rights | Copyrighted | |
| dc.subject | Multidisciplinary Sciences | |
| dc.title | ML-augmented Ti-based microrobotic stents | |
| dc.type | Journal Article | |
| dspace.entity.type | Publication | |
| person.familyName | Choukri | |
| person.familyName | Taşoğlu | |
| person.givenName | Abdullah Ahmed | |
| person.givenName | Savaş | |
| relation.isOrgUnitOfPublication | ba2836f3-206d-4724-918c-f598f0086a36 | |
| relation.isOrgUnitOfPublication | 77d67233-829b-4c3a-a28f-bd97ab5c12c7 | |
| relation.isOrgUnitOfPublication | 91bbe15d-017f-446b-b102-ce755523d939 | |
| relation.isOrgUnitOfPublication | 738de008-9021-4b5c-a60b-378fded7ef70 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | ba2836f3-206d-4724-918c-f598f0086a36 | |
| relation.isParentOrgUnitOfPublication | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 | |
| relation.isParentOrgUnitOfPublication | d437580f-9309-4ecb-864a-4af58309d287 | |
| relation.isParentOrgUnitOfPublication.latestForDiscovery | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 |
