Publication:
ML-augmented Ti-based microrobotic stents

dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentKUIS AI (Koç University & İş Bank Artificial Intelligence Center)
dc.contributor.departmentKUTTAM (Koç University Research Center for Translational Medicine)
dc.contributor.departmentKUAR (KU Arçelik Research Center for Creative Industries)
dc.contributor.kuauthorChoukri, Abdullah Ahmed
dc.contributor.kuauthorTaşoğlu, Savaş
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteResearch Center
dc.date.accessioned2026-01-16T08:46:28Z
dc.date.available2026-01-16
dc.date.issued2025
dc.description.abstractThe integration of microrobotic stents into biomedical applications has the potential to revolutionize invasive procedures by enabling precise drug delivery, imaging, and vascular interventions. These interventions demand alloys with high radial stiffness for structural integrity and low density for biocompatibility. We developed a machine learning (ML)-finite element analysis (FEA) framework to optimize titanium (Ti)-based and Ti-based high-entropy alloys (Ti-HEAs) compositions using a curated database of 238 alloys. Gaussian process regression (GPR) is trained on FEA-simulated radial stiffness and constrained optimization (interior-point, sequential quadratic programming (SQP), active-set) identified high-performance candidates. The interior-point algorithm yielded the highest stiffness (483.54 kN/m) with balanced composition (Ti: 76.29 at%, Nb: 6.88%, Zr: 7.34%, Ta: 7.31%), outperforming the dataset maximum (TiSn 20, 472.49 kN/m) by 2.32% and Ti-6Al-4 V (368.96 kN/m) by 31%. All algorithms converged to at least 469 kN/m despite compositional diversity, confirming robustness. The framework enables rapid, physics-informed alloy design for next-generation biomedical microrobotics.
dc.description.fulltextNo
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipScience Academy's Young Scientist Awards Program (BAGEP); Bilim Kahramanlari Dernegi; Outstanding Young Scientists Awards (GEBIdot;P); Trkiye Bilimsel ve Teknolojik Arascedil;tirma Kurumu [123S582, 123Z050]
dc.identifier.doi10.1002/adts.202502105
dc.identifier.eissn2513-0390
dc.identifier.embargoNo
dc.identifier.grantno123S582; 123Z050
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-105025029021
dc.identifier.urihttps://doi.org/10.1002/adts.202502105
dc.identifier.urihttps://hdl.handle.net/20.500.14288/32091
dc.identifier.wos001640585000001
dc.keywordsFinite element analysis (FEA)
dc.keywordsMachine learning optimization
dc.keywordsMaterial property prediction
dc.keywordsMicrorobotic stents
dc.keywordsTitanium alloys
dc.language.isoeng
dc.publisherWiley-VCH GmbH
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofAdvanced Theory and Simulations
dc.relation.openaccessNo
dc.rightsCopyrighted
dc.subjectMultidisciplinary Sciences
dc.titleML-augmented Ti-based microrobotic stents
dc.typeJournal Article
dspace.entity.typePublication
person.familyNameChoukri
person.familyNameTaşoğlu
person.givenNameAbdullah Ahmed
person.givenNameSavaş
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication77d67233-829b-4c3a-a28f-bd97ab5c12c7
relation.isOrgUnitOfPublication91bbe15d-017f-446b-b102-ce755523d939
relation.isOrgUnitOfPublication738de008-9021-4b5c-a60b-378fded7ef70
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublicationd437580f-9309-4ecb-864a-4af58309d287
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files