Publication:
Halloysite clay nanotube in regenerative medicine for tissue and wound healing

dc.contributor.coauthorSame, Saeideh
dc.contributor.coauthorSamee, Golshan
dc.contributor.coauthorNavidi, Golnaz
dc.contributor.coauthorJahanbani, Yalda
dc.contributor.coauthorDavaran, Soodabeh
dc.contributor.departmentN/A
dc.contributor.kuauthorNakhjavani, Sattar Akbar
dc.contributor.kuprofileResearcher
dc.contributor.researchcenterKoç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM)
dc.contributor.schoolcollegeinstituteN/A
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T22:53:36Z
dc.date.issued2022
dc.description.abstractThe vital necessity of effective treatment at damaged tissue or wound site has resulted in emerging tissue en-gineering and regenerative medicine. Tissue engineering has been introduced as an alternative approach for common available therapeutic strategies in the terms of restoring deformed tissue structure and its functionality via the developing of new bio-scaffold. Designed three-dimensional (3D) scaffolds, alone or in combination with bioactive agents, should be able to stimulate and accelerate the development of engineered tissues and provide proper mechanical support during in-vivo implantation and later regeneration process. To cover it up, a series of new bio-structures with higher mechanical strength were designed through the combination of halloysite nanotubes (HNTs) into 3D bio-polymeric networks. HNTs clay mineral with its unique rod-like structure and distinctive chemical surface features, exhibits excellent biocompatibility and biosafety for doping into regen-erative scaffolds to enhance their mechanical stiffness and biological performance. In this paper, the ongoing procedures of bone/cartilage tissue engineering and wound healing strategies focusing on the designing of 3D-HNTs bio-composites and their multi-cellular interactions in-vitro and in-vivo preclinical studies are reviewed. Furthermore, the challenges and prospects of 3D-HNTs and HNTs-based functional bio-devices for regenerative medicine are also discussed.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue21
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsorshipResearch Center for Pharmaceutical Nanotechnology (RCPN)
dc.description.sponsorship[62177] Acknowledgment The authors appreciate the Tabriz University of medical sciences for all supports provided.
dc.description.volume48
dc.identifier.doi10.1016/j.ceramint.2022.05.037
dc.identifier.eissn1873-3956
dc.identifier.issn0272-8842
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85138463622
dc.identifier.urihttp://dx.doi.org/10.1016/j.ceramint.2022.05.037
dc.identifier.urihttps://hdl.handle.net/20.500.14288/7225
dc.identifier.wos867753400001
dc.keywordsHalloysite nanotube
dc.keywordsTissue engineering
dc.keywordsWound healing
dc.keywordsCeramic nanocomposite
dc.languageEnglish
dc.publisherElsevier
dc.sourceCeramics International
dc.subjectMaterials science
dc.subjectCeramics
dc.titleHalloysite clay nanotube in regenerative medicine for tissue and wound healing
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-5693-350X
local.contributor.kuauthorNakhjavani, Sattar Akbar

Files