Publication:
Pseudo-hermiticity, anti-pseudo-hermiticity, and generalized parity-time-reversal symmetry at exceptional points

dc.contributor.departmentDepartment of Physics
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorİnce, Nil
dc.contributor.kuauthorMermer, Hasan
dc.contributor.kuauthorMostafazadeh, Ali
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2025-12-31T08:23:34Z
dc.date.available2025-12-31
dc.date.issued2025
dc.description.abstractFor a diagonalizable linear operator H:H -> H acting in a separable Hilbert space H, i.e., an operator with a purely point spectrum, eigenvalues with finite algebraic multiplicities, and a set of eigenvectors that form a Reisz basis of H, the pseudo-Hermiticity of H is equivalent to its generalized parity-time-reversal (PT) symmetry, where the latter means the existence of an antilinear operator X:H -> H satisfying [X,H]=0 and X-2=1. The original proof of this result makes use of the anti-pesudo-Hermiticity of every diagonalizable operator L:H -> H, which means the existence of an antilinear Hermitian bijection tau:H -> H satisfying L-dagger = tau L tau(-1.) We establish the validity of this result for block-diagonalizable operators, i.e., those which have a purely point spectrum, eigenvalues with finite algebraic multiplicities, and a set of generalized eigenvectors that form a Jordan Reisz basis of H. This allows us to generalize the original proof of the equivalence of pseudo-Hermiticity and generalized PT-symmetry for diagonalizable operators to block-diagonalizable operators. For a pair of pseudo-Hermitian operators acting respectively in two-dimensional and infinite-dimensional Hilbert spaces, we obtain explicit expressions for the antlinear operators tau and X that realize their anti-pseudo-Hermiticity and generalized PT-symmetry at and away from the exceptional points.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipTürkiye Bilimler Akademisi (Turkish Academy of Sciences)
dc.identifier.doi10.1063/5.0264120
dc.identifier.eissn1089-7658
dc.identifier.embargoNo
dc.identifier.issn0022-2488
dc.identifier.issue9
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-105015218454
dc.identifier.urihttps://doi.org/10.1063/5.0264120
dc.identifier.urihttps://hdl.handle.net/20.500.14288/31738
dc.identifier.volume66
dc.identifier.wos001565344800005
dc.keywordsQuantum cosmology
dc.keywordsHermitian operator
dc.keywordsOperator theory
dc.keywordsSpectral phenomena and properties
dc.keywordsQuantum mechanical systems and processes
dc.keywordsHilbert space
dc.keywordsRelativistic quantum theory
dc.language.isoeng
dc.publisherAIP Publishing
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofJournal of Mathematical Physics
dc.relation.openaccessYes
dc.rightsCC BY-NC-ND (Attribution-NonCommercial-NoDerivs)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectPhysics
dc.titlePseudo-hermiticity, anti-pseudo-hermiticity, and generalized parity-time-reversal symmetry at exceptional points
dc.typeJournal Article
dspace.entity.typePublication
person.familyNameİnce
person.familyNameMermer
person.familyNameMostafazadeh
person.givenNameNil
person.givenNameHasan
person.givenNameAli
relation.isOrgUnitOfPublicationc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscoveryc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files