Publication:
Magnetospheric injection of ELF/VLF waves with modulated or steered HF heating of the lower ionosphere

dc.contributor.coauthorCohen, M. B.
dc.contributor.coauthorPiddyachiy, D.
dc.contributor.coauthorLehtinen, N. G.
dc.contributor.coauthorGolkowski, M.
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorİnan, Umran Savaş
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-11-09T13:45:21Z
dc.date.issued2011
dc.description.abstractELF/VLF waves have been generated via steerable HF heating of the lower ionosphere. The temperature-dependent conductivity of the lower ionospheric plasma enables HF heating (and subsequent recovery) to modulate natural current systems such as the auroral electrojet, thus generating an antenna embedded in the ionospheric plasma. We apply a realistic three-dimensional model of HF heating and ionospheric recovery, as well as ELF/VLF wave propagation in and below the ionosphere, to derive the radiation pattern into the magnetosphere as a result of steerable HF heating. It is found that modulated HF heating preferentially directs signals upward into space because of the phasing effect of the upward HF wave propagation. We find that the steering techniques such as the geometric modulation "circle sweep" enhances the total ELF/VLF power injected into the magnetosphere by 5-7 dB compared to amplitude modulated heating, with a few dB enhancement in the peak magnetic field value. Another technique known as beam painting enhances the total injected power by 1-3 dB but produces weaker peak magnetic fields due to the power being spread over a larger area. Observations on the DEMETER spacecraft are presented and compared with theoretical predictions. DEMETER observations show that the signal produced with geometric modulation can be stronger than the signal from AM under the same conditions.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issueA6
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipHAARP
dc.description.sponsorshipOffice of Naval Research (ONR)
dc.description.sponsorshipAir Force Research Laboratory (AFRL)
dc.description.sponsorshipDefense Advanced Research Programs Agency (DARPA)
dc.description.versionPublisher version
dc.description.volume116
dc.identifier.doi10.1029/2010JA016194
dc.identifier.eissn2169-9402
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR00603
dc.identifier.issn2169-9380
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-79959510822
dc.identifier.urihttps://doi.org/10.1029/2010JA016194
dc.identifier.wos291823900002
dc.keywordsAuroral electrojet
dc.keywordsPolar electrojet
dc.keywordsElf waves
dc.keywordsVlf waves
dc.keywordsSignals
dc.keywordsHeater
dc.keywordsTransmitter
dc.keywordsEmissions
dc.keywordsSatellite
dc.language.isoeng
dc.publisherAmerican Geophysical Union (AGU)
dc.relation.grantnoN00014-09-1, N00014-05-1-0854
dc.relation.ispartofJournal of Geophysical Research: Space Physics
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/659
dc.subjectAstronomy and astrophysics
dc.titleMagnetospheric injection of ELF/VLF waves with modulated or steered HF heating of the lower ionosphere
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorİnan, Umran Savaş
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Electrical and Electronics Engineering
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
659.pdf
Size:
595.69 KB
Format:
Adobe Portable Document Format