Publication:
Optimal and efficient distributed online learning for big data

dc.contributor.coauthorSayın, Muhammed O.
dc.contributor.coauthorVanlı, N. Denizcan
dc.contributor.coauthorKozat, Süleyman S.
dc.contributor.kuauthorDelibalta, İbrahim
dc.contributor.kuprofilePhD Student
dc.contributor.schoolcollegeinstituteGraduate School of Social Sciences and Humanities
dc.contributor.yokidN/A
dc.date.accessioned2024-11-10T00:01:22Z
dc.date.issued2015
dc.description.abstractWe propose optimal and efficient distributed online learning strategies for Big Data applications. Here, we consider the optimal state estimation over distributed network of autonomous data sources. The autonomous data sources can generate and process data locally irrespective of any centralized control unit. We seek to enhance the learning rate through the distributed control of those autonomous data sources. We emphasize that although this problem attracted significant attention and extensively studied in different fields including services computing and machine learning disciplines, all the well-known strategies achieve suboptimal online learning performance in the mean square error sense. To this end, we introduce the oracle algorithm as the optimal distributed online learning strategy. We also propose the optimal and efficient distributed online learning algorithm that reduces the communication load tremendously, i.e., requires the undirected disclosure of only a single scalar. Finally, we demonstrate the significant performance gains due to the proposed strategies with respect to the state-of-the-art approaches.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.identifier.doi10.1109/BigDataCongress.2015.27
dc.identifier.isbn978-1-4673-7278-7
dc.identifier.issn2379-7703
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-84959540956
dc.identifier.urihttp://dx.doi.org/10.1109/BigDataCongress.2015.27
dc.identifier.urihttps://hdl.handle.net/20.500.14288/15962
dc.identifier.wos380443700017
dc.keywordsDistributed processing
dc.keywordsOnline learning
dc.keywordsOptimal and efficient
dc.keywordsStatic state estimation
dc.keywordsBig Data
dc.keywordsSmart grid
dc.languageEnglish
dc.publisherIEEE
dc.source2015 IEEE International Congress on Big Data - Bigdata Congress 2015
dc.subjectComputer science
dc.subjectTheory methods
dc.subjectEngineering
dc.subjectElectrical electronic engineering
dc.titleOptimal and efficient distributed online learning for big data
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-7296-6301
local.contributor.kuauthorDelibalta, İbrahim

Files