Publication:
Anomalies in the transcriptional regulatory network of the Yeast Saccharomyces cerevisiae

Placeholder

School / College / Institute

Organizational Unit

Program

KU Authors

Co-Authors

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

We investigate the structural and dynamical properties of the transcriptional regulatory network of the Yeast Saccharomyces cerevisiae and compare it with two "unbiased" ensembles: one obtained by reshuffling the edges and the other generated by mimicking the transcriptional regulation mechanism within the cell. Both ensembles reproduce the degree distributions (the first-by construction-exactly and the second approximately), degree-degree correlations and the k-core structure observed in Yeast. An exceptionally large dynamically relevant core network found in Yeast in comparison with the second ensemble points to a strong bias towards a collective organization which is achieved by subtle modifications in the network's degree distributions. We use a Boolean model of regulatory dynamics with various classes of update functions to represent in vivo regulatory interactions. We find that the Yeast's core network has a qualitatively different behavior, accommodating on average multiple attractors unlike typical members of both reference ensembles which converge to a single dominant attractor. Finally, we investigate the robustness of the networks and find that the stability depends strongly on the used function class. The robustness measure is squeezed into a narrower band around the order-chaos boundary when Boolean inputs are required to be nonredundant on each node. However, the difference between the reference models and the Yeast's core is marginal, suggesting that the dynamically stable network elements are located mostly on the peripherals of the regulatory network. Consistently, the statistically significant three-node motifs in the dynamical core of Yeast turn out to be different from and less stable than those found in the full transcriptional regulatory network.

Source

Publisher

Elsevier

Subject

Biology, Mathematics, Computational biology

Citation

Has Part

Source

Journal of Theoretical Biology

Book Series Title

Edition

DOI

10.1016/j.jtbi.2009.12.008

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

0

Downloads

View PlumX Details