Publication:
A reliable and efficient procedure for oscillator PPV computation, with phase noise macromodeling applications

Placeholder

School / College / Institute

Program

KU-Authors

KU Authors

Co-Authors

Roychowdhury, J

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

The main effort in oscillator phase noise calculation and macromodeling lies in computing a vector function called the perturbation projection vector (PPV). Current techniques for PPV calculation use time-domain numerics to generate the system's monodromy matrix, followed by full or partial eigenanalysis. We present superior methods that find the PPV using only a single linear solution of the oscillator's time- or frequency-domain steady-state Jacobian matrix. The new methods are better suited for implementation in existing tools with harmonic balance or shooting capabilities (especially those incorporating "fast" variants), and can also be more accurate than explicit eigenanalysis. A key advantage is that they dispense with the need to select the correct one eigenfunction from amongst a potentially large set of choices, an issue that explicit eigencalculation-based methods have to face. We illustrate the new methods in detail using LC and ring oscillators.

Source

Publisher

IEEE-Inst Electrical Electronics Engineers Inc

Subject

Computer science, hardware and architecture, Computer science, interdisciplinary applications, Engineering, electrical and electronic

Citation

Has Part

Source

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

Book Series Title

Edition

DOI

10.1109/TCAD.2002.806599

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

0

Downloads

View PlumX Details