Publication:
Vehicular visible light communications noise analysis and autoencoder based denoising

dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorErgen, Sinem Çöleri
dc.contributor.kuauthorKar, Emrah
dc.contributor.kuauthorTuran, Buğra
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-11-09T11:38:08Z
dc.date.issued2022
dc.description.abstractVehicular visible light communications (V-VLC) is a promising intelligent transportation systems (ITS) technology for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications with the utilization of light emitting diodes (LEDs). The main degrading factor for the performance of V-VLC systems is noise. Unlike traditional radio frequency (RF) based systems, V-VLC systems include many noise sources: solar radiation, background lighting from vehicle, street, parking garage and tunnel lights. Traditional V-VLC system noise modeling is based on the additive white Gaussian noise assumption in the form of shot and thermal noise. In this paper, to investigate both time correlated and white noise components of the V-VLC channel, we propose a noise analysis based on Allan variance (AVAR), which provides a time-series analysis method to identify noise from the data. We also propose a generalized Wiener process based V-VLC channel noise synthesis methodology to generate different noise components. We further propose convolutional autoencoder (CAE) based denoising scheme to reduce V-VLC signal noise, which achieves reconstruction root mean square error (RMSE) of 0.0442 and 0.0474 for indoor and outdoor channels, respectively.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU - TÜBİTAK
dc.description.sponsorshipEuropean Union (EU)
dc.description.sponsorshipHorizon2020
dc.description.sponsorshipCHIST-ERA
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.sponsorshipFord Otosan
dc.description.versionAuthor's final manuscript
dc.identifier.doi10.1109/EuCNC/6GSummit54941.2022.9815630
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03845
dc.identifier.isbn9.78E+12
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85134697131
dc.identifier.urihttps://hdl.handle.net/20.500.14288/110
dc.identifier.wos852896500004
dc.keywordsGarages (parking)
dc.keywordsGaussian noise (electronic)
dc.keywordsIntelligent systems
dc.keywordsIntelligent vehicle highway systems
dc.keywordsLearning systems
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.grantno1.79769313486232E+308
dc.relation.ispartof2022 Joint European Conference on Networks and Communications and 6G Summit, EuCNC/6G Summit 2022
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10703
dc.subjectEngineering
dc.titleVehicular visible light communications noise analysis and autoencoder based denoising
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorErgen, Sinem Çöleri
local.contributor.kuauthorTuran, Buğra
local.contributor.kuauthorKar, Emrah
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Electrical and Electronics Engineering
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10703.pdf
Size:
323.51 KB
Format:
Adobe Portable Document Format