Publication:
Quantifying polycrystallinity effects on skyrmion dynamics and device performance

dc.contributor.coauthorTrabzon, Ahmet Bahadır
dc.contributor.departmentDepartment of Physics
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorCheghabouri, Arash Mousavi
dc.contributor.kuauthorOnbaşlı, Mehmet Cengiz
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2025-12-31T08:23:37Z
dc.date.available2025-12-31
dc.date.issued2025
dc.description.abstractSkyrmion-based devices promise energy-efficient spintronic functionalities, but polycrystalline magnetic films can degrade performance by inducing skyrmion pinning. Here, we use micromagnetic modeling to quantify the impact of polycrystallinity-induced variability in key material parameters such as saturation magnetization, Dzyaloshinskii–Moriya interaction, and uniaxial anisotropy on skyrmion stability, dynamics, and hysteresis loops in Co/Pt films and device geometries. We demonstrate that variations exceeding 5% in these parameters across grains significantly increase the likelihood of pinning, with the effects depending on both grain size and distribution. Our findings establish quantitative tolerance thresholds and highlight the importance of fabricating films with narrow grain size distributions and stringent control over material uniformity to enable robust, pinning-free operation in skyrmion-based spintronic devices.
dc.description.fulltextNo
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.openaccessAll Open Access; Hybrid Gold Open Access
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipAir Force Office of Scientific Research, AFOSR; European Research Council, ERC, (948063, 101100718); European Research Council, ERC; European Office of Aerospace Research and Development, EOARD, (FA8655-24-1-7033); European Office of Aerospace Research and Development, EOARD
dc.identifier.doi10.1039/d5cp01730k
dc.identifier.eissn1463-9084
dc.identifier.embargoNo
dc.identifier.endpage19702
dc.identifier.issn1463-9076
dc.identifier.issue37
dc.identifier.pubmed40891108
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-105017016449
dc.identifier.startpage19694
dc.identifier.urihttps://doi.org/10.1039/d5cp01730k
dc.identifier.urihttps://hdl.handle.net/20.500.14288/31742
dc.identifier.volume27
dc.keywordsMagnetic devices
dc.keywordsMagnetic materials
dc.keywordsPolycrystalline materials
dc.keywordsSize distribution
dc.keywordsSpintronics
dc.language.isoeng
dc.publisherRoyal Society of Chemistry
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofPhysical Chemistry Chemical Physics
dc.relation.openaccessYes
dc.rightsCopyrighted
dc.subjectPhysics
dc.subjectChemistry
dc.subjectMolecular and chemical
dc.titleQuantifying polycrystallinity effects on skyrmion dynamics and device performance
dc.typeJournal Article
dspace.entity.typePublication
person.familyNameCheghabouri
person.familyNameOnbaşlı
person.givenNameArash Mousavi
person.givenNameMehmet Cengiz
relation.isOrgUnitOfPublicationc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscoveryc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files