Publication:
Homologous non-isotopic symplectic tori in homotopy rational elliptic surfaces

dc.contributor.coauthorPark, B. Doug
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorEtgü, Tolga
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T23:38:46Z
dc.date.issued2006
dc.description.abstractLet E(1)(K) denote the homotopy rational elliptic surface corresponding to a knot K in S-3 constructed by R. Fintushel and R. J. Stern. We construct an infinite family of homologous non-isotopic symplectic tori representing a primitive 2-dimensional homology class in E(1)(K) when K is any nontrivial fibred knot in S-3. We also show how these tori can be non-isotopically embedded as homologous symplectic submanifolds in other symplectic 4-manifolds.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume140
dc.identifier.doi10.1017/S0305004105008790
dc.identifier.eissn1469-8064
dc.identifier.issn0305-0041
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-33244493971
dc.identifier.urihttps://doi.org/10.1017/S0305004105008790
dc.identifier.urihttps://hdl.handle.net/20.500.14288/12987
dc.identifier.wos234946200005
dc.language.isoeng
dc.publisherCambridge University Press (CUP)
dc.relation.ispartofMathematical Proceedings of the Cambridge Philosophical Society
dc.subjectMathematics
dc.titleHomologous non-isotopic symplectic tori in homotopy rational elliptic surfaces
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorEtgü, Tolga
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files