Publication: NTIRE 2024 challenge on image super-resolution (×4): methods and results
dc.contributor.coauthor | Chen Z., Wu Z., Zamfir E.-S., Zhang K., Zhang Y., Timofte R., Yang X., Yu H., Wan C., Hong Y., Huang Z., Zou Y., Huang Y., Lin J., Han B., Guan X., Yu Y., Zhang D., Yin X., Zuo K., Hao J., Zhao K., Yuan K., Sun M., Zhou C., An H., Zhang X., Song Z., Dong Z., Zhao Q., Xu X., Wei P., Dou Z.-C., Wang G.-L., Hsu C.-C., Lee C.-M., Chou Y.-S., Wei Y., Yan X., Li B., Chen H., Zhang S., Chen S., Joshi A., Akalwadi N., Malagi S., Yashaswini P., Desai C., Tabib R.A., Patil U., Mudenagudi U., Sarvaiya A., Joshi J., Kawa S., Upla K., Patwardhan S., Ramachandra R., Hossain S., Park G., Uddin S.M.N., Xu H., Guo Y., Urumbekov A., Yan X., Hao W., Fu M., Orais I., Smith S., Liu Y., Jia W., Xu Q., Xu K., Yuan W., Li Z., Kuang W., Guan R., Deng R., Zhang Z., Wang B., Zhao S., Luo Y., Wei Y., Khan A.H., Micheloni C., Martinel N., Choksy P. | |
dc.contributor.department | Department of Electrical and Electronics Engineering | |
dc.contributor.department | Graduate School of Sciences and Engineering | |
dc.contributor.kuauthor | Korkmaz, Cansu | |
dc.contributor.kuauthor | Tekalp, Ahmet Murat | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.contributor.schoolcollegeinstitute | GRADUATE SCHOOL OF SCIENCES AND ENGINEERING | |
dc.date.accessioned | 2025-03-06T20:58:31Z | |
dc.date.issued | 2024 | |
dc.description.abstract | This paper reviews the NTIRE 2024 challenge on image super-resolution (×4), highlighting the solutions proposed and the outcomes obtained. The challenge involves generating corresponding high-resolution (HR) images, magnified by a factor of four, from low-resolution (LR) inputs using prior information. The LR images originate from bicubic downsampling degradation. The aim of the challenge is to obtain designs/solutions with the most advanced SR performance, with no constraints on computational resources (e.g., model size and FLOPs) or training data. The track of this challenge assesses performance with the PSNR metric on the DIV2K testing dataset. The competition attracted 199 registrants, with 20 teams submitting valid entries. This collective endeavour not only pushes the boundaries of performance in single-image SR but also offers a comprehensive overview of current trends in this field. © 2024 IEEE. | |
dc.description.indexedby | Scopus | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | N/A | |
dc.identifier.doi | 10.1109/CVPRW63382.2024.00617 | |
dc.identifier.isbn | 9798350365474 | |
dc.identifier.issn | 2160-7508 | |
dc.identifier.quartile | N/A | |
dc.identifier.scopus | 2-s2.0-85190874112 | |
dc.identifier.uri | https://doi.org/10.1109/CVPRW63382.2024.00617 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/27482 | |
dc.keywords | Image Sr | |
dc.keywords | Ntire 2024 challenge | |
dc.language.iso | eng | |
dc.publisher | IEEE Computer Society | |
dc.relation.ispartof | IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops | |
dc.subject | Electrical and electronics engineering | |
dc.subject | Computer engineering | |
dc.title | NTIRE 2024 challenge on image super-resolution (×4): methods and results | |
dc.type | Conference Proceeding | |
dspace.entity.type | Publication | |
local.contributor.kuauthor | Korkmaz, Cansu | |
local.contributor.kuauthor | Tekalp, Ahmet Murat | |
local.publication.orgunit1 | GRADUATE SCHOOL OF SCIENCES AND ENGINEERING | |
local.publication.orgunit1 | College of Engineering | |
local.publication.orgunit2 | Department of Electrical and Electronics Engineering | |
local.publication.orgunit2 | Graduate School of Sciences and Engineering | |
relation.isOrgUnitOfPublication | 21598063-a7c5-420d-91ba-0cc9b2db0ea0 | |
relation.isOrgUnitOfPublication | 3fc31c89-e803-4eb1-af6b-6258bc42c3d8 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 21598063-a7c5-420d-91ba-0cc9b2db0ea0 | |
relation.isParentOrgUnitOfPublication | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 | |
relation.isParentOrgUnitOfPublication | 434c9663-2b11-4e66-9399-c863e2ebae43 | |
relation.isParentOrgUnitOfPublication.latestForDiscovery | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 |