Publication:
A fully iPS-cell-derived 3D model of the human blood-brain barrier for exploring neurovascular disease mechanisms and therapeutic interventions

dc.contributor.coauthorGonzalez-Gallego, Judit
dc.contributor.coauthorTodorov-Volgyi, Katalin
dc.contributor.coauthorMuller, Stephan A.
dc.contributor.coauthorAntesberger, Sophie
dc.contributor.coauthorTodorov, Mihail Ivilinov
dc.contributor.coauthorMalik, Rainer
dc.contributor.coauthorGrimalt-Mirada, Rita
dc.contributor.coauthorGoncalves, Carolina Cardoso
dc.contributor.coauthorSchifferer, Martina
dc.contributor.coauthorKislinger, Georg
dc.contributor.coauthorWeisheit, Isabel
dc.contributor.coauthorLindner, Barbara
dc.contributor.coauthorCrusius, Dennis
dc.contributor.coauthorKroeger, Joseph
dc.contributor.coauthorBorri, Mila
dc.contributor.coauthorNelson, Mark
dc.contributor.coauthorMisgeld, Thomas
dc.contributor.coauthorLichtenthaler, Stefan F.
dc.contributor.coauthorDichgans, Martin
dc.contributor.coauthorPaquet, Dominik
dc.contributor.departmentSchool of Medicine
dc.contributor.kuauthorErtürk, Ali Maximilian
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.date.accessioned2026-01-16T08:45:31Z
dc.date.available2026-01-16
dc.date.issued2025
dc.description.abstractBlood-brain barrier (BBB) integrity is critical for brain homeostasis, with malfunctions contributing to neurovascular and neurodegenerative disorders. Mechanistic studies on BBB function have been mostly conducted in rodent and in vitro models, which recapitulate some disease features, but have limited translatability to humans and pose challenges for drug discovery. Here we report on a fully human induced pluripotent stem (iPS)-cell-derived, microfluidic three-dimensional (3D) BBB model consisting of endothelial cells (ECs), mural cells and astrocytes. Our model expresses typical fate markers, forms a barrier in vessel-like tubes and enables perfusion, including with human blood. Deletion of FOXF2 in ECs, a major risk gene for cerebral small vessel disease, induced key features of BBB dysfunction, including compromised cell junction integrity and enhanced caveolae formation. Proteomic analysis revealed dysregulated endocytosis and cell junction pathways. Disease features phenocopied those seen in mice with EC-specific Foxf2 deficiency. Moreover, lipid-nanoparticle-based treatment with Foxf2 mRNA rescued BBB deficits, demonstrating the potential for drug development.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.openaccessHybrid OA
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy within the framework of the Munich Cluster for Systems Neurology (EXC 2145 SyNergy, ID 390857198), individual project grants (nos. DI 722/13-1; DI 722/16-1 and BE 6169/1-1), Mi 694/9-1 A03-ID 428663564 FOR Immunostroke and SFB TRR 274/2 2024—408885537 project Z01, Centers of Excellence in Neurodegeneration for grant CoEN6005, European Union’s Horizon 2020 research and innovation program SVDs@target, European Innovation Council program, Federal Ministry for Education and Research (BMBF, CLINSPECT-M), Foundation Leducq (grant agreement N022CVD01), as well as R01-NS-110656, RF1-NS-128963,R35-HL140027 and the Totman Medical Research Trust.
dc.description.sponsorshipOpen access funding provided by Ludwig-Maximilians-Universität München.
dc.identifier.doi10.1038/s41593-025-02123-w
dc.identifier.eissn1546-1726
dc.identifier.embargoNo
dc.identifier.grantno666881
dc.identifier.grantno101115381
dc.identifier.issn1097-6256
dc.identifier.pubmed41398476
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-105024898224
dc.identifier.urihttps://doi.org/10.1038/s41593-025-02123-w
dc.identifier.urihttps://hdl.handle.net/20.500.14288/32013
dc.identifier.wos001638848800001
dc.keywordsBlood–brain barrier
dc.keywordsExperimental models of disease
dc.keywordsStem-cell differentiation
dc.keywordsStroke
dc.language.isoeng
dc.publisherNature Portfolio
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofNature Neuroscience
dc.relation.openaccessYes
dc.rightsCC BY-NC-ND (Attribution-NonCommercial-NoDerivs)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectNeurosciences
dc.titleA fully iPS-cell-derived 3D model of the human blood-brain barrier for exploring neurovascular disease mechanisms and therapeutic interventions
dc.typeJournal Article
dspace.entity.typePublication
person.familyNameErtürk
person.givenNameAli Maximilian
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublication.latestForDiscoveryd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication.latestForDiscovery17f2dc8e-6e54-4fa8-b5e0-d6415123a93e

Files