Publication: A fully iPS-cell-derived 3D model of the human blood-brain barrier for exploring neurovascular disease mechanisms and therapeutic interventions
| dc.contributor.coauthor | Gonzalez-Gallego, Judit | |
| dc.contributor.coauthor | Todorov-Volgyi, Katalin | |
| dc.contributor.coauthor | Muller, Stephan A. | |
| dc.contributor.coauthor | Antesberger, Sophie | |
| dc.contributor.coauthor | Todorov, Mihail Ivilinov | |
| dc.contributor.coauthor | Malik, Rainer | |
| dc.contributor.coauthor | Grimalt-Mirada, Rita | |
| dc.contributor.coauthor | Goncalves, Carolina Cardoso | |
| dc.contributor.coauthor | Schifferer, Martina | |
| dc.contributor.coauthor | Kislinger, Georg | |
| dc.contributor.coauthor | Weisheit, Isabel | |
| dc.contributor.coauthor | Lindner, Barbara | |
| dc.contributor.coauthor | Crusius, Dennis | |
| dc.contributor.coauthor | Kroeger, Joseph | |
| dc.contributor.coauthor | Borri, Mila | |
| dc.contributor.coauthor | Nelson, Mark | |
| dc.contributor.coauthor | Misgeld, Thomas | |
| dc.contributor.coauthor | Lichtenthaler, Stefan F. | |
| dc.contributor.coauthor | Dichgans, Martin | |
| dc.contributor.coauthor | Paquet, Dominik | |
| dc.contributor.department | School of Medicine | |
| dc.contributor.kuauthor | Ertürk, Ali Maximilian | |
| dc.contributor.schoolcollegeinstitute | SCHOOL OF MEDICINE | |
| dc.date.accessioned | 2026-01-16T08:45:31Z | |
| dc.date.available | 2026-01-16 | |
| dc.date.issued | 2025 | |
| dc.description.abstract | Blood-brain barrier (BBB) integrity is critical for brain homeostasis, with malfunctions contributing to neurovascular and neurodegenerative disorders. Mechanistic studies on BBB function have been mostly conducted in rodent and in vitro models, which recapitulate some disease features, but have limited translatability to humans and pose challenges for drug discovery. Here we report on a fully human induced pluripotent stem (iPS)-cell-derived, microfluidic three-dimensional (3D) BBB model consisting of endothelial cells (ECs), mural cells and astrocytes. Our model expresses typical fate markers, forms a barrier in vessel-like tubes and enables perfusion, including with human blood. Deletion of FOXF2 in ECs, a major risk gene for cerebral small vessel disease, induced key features of BBB dysfunction, including compromised cell junction integrity and enhanced caveolae formation. Proteomic analysis revealed dysregulated endocytosis and cell junction pathways. Disease features phenocopied those seen in mice with EC-specific Foxf2 deficiency. Moreover, lipid-nanoparticle-based treatment with Foxf2 mRNA rescued BBB deficits, demonstrating the potential for drug development. | |
| dc.description.fulltext | Yes | |
| dc.description.harvestedfrom | Manual | |
| dc.description.indexedby | WOS | |
| dc.description.indexedby | Scopus | |
| dc.description.indexedby | PubMed | |
| dc.description.openaccess | Hybrid OA | |
| dc.description.publisherscope | International | |
| dc.description.readpublish | N/A | |
| dc.description.sponsoredbyTubitakEu | EU | |
| dc.description.sponsorship | Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy within the framework of the Munich Cluster for Systems Neurology (EXC 2145 SyNergy, ID 390857198), individual project grants (nos. DI 722/13-1; DI 722/16-1 and BE 6169/1-1), Mi 694/9-1 A03-ID 428663564 FOR Immunostroke and SFB TRR 274/2 2024—408885537 project Z01, Centers of Excellence in Neurodegeneration for grant CoEN6005, European Union’s Horizon 2020 research and innovation program SVDs@target, European Innovation Council program, Federal Ministry for Education and Research (BMBF, CLINSPECT-M), Foundation Leducq (grant agreement N022CVD01), as well as R01-NS-110656, RF1-NS-128963,R35-HL140027 and the Totman Medical Research Trust. | |
| dc.description.sponsorship | Open access funding provided by Ludwig-Maximilians-Universität München. | |
| dc.identifier.doi | 10.1038/s41593-025-02123-w | |
| dc.identifier.eissn | 1546-1726 | |
| dc.identifier.embargo | No | |
| dc.identifier.grantno | 666881 | |
| dc.identifier.grantno | 101115381 | |
| dc.identifier.issn | 1097-6256 | |
| dc.identifier.pubmed | 41398476 | |
| dc.identifier.quartile | Q1 | |
| dc.identifier.scopus | 2-s2.0-105024898224 | |
| dc.identifier.uri | https://doi.org/10.1038/s41593-025-02123-w | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14288/32013 | |
| dc.identifier.wos | 001638848800001 | |
| dc.keywords | Blood–brain barrier | |
| dc.keywords | Experimental models of disease | |
| dc.keywords | Stem-cell differentiation | |
| dc.keywords | Stroke | |
| dc.language.iso | eng | |
| dc.publisher | Nature Portfolio | |
| dc.relation.affiliation | Koç University | |
| dc.relation.collection | Koç University Institutional Repository | |
| dc.relation.ispartof | Nature Neuroscience | |
| dc.relation.openaccess | Yes | |
| dc.rights | CC BY-NC-ND (Attribution-NonCommercial-NoDerivs) | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.subject | Neurosciences | |
| dc.title | A fully iPS-cell-derived 3D model of the human blood-brain barrier for exploring neurovascular disease mechanisms and therapeutic interventions | |
| dc.type | Journal Article | |
| dspace.entity.type | Publication | |
| person.familyName | Ertürk | |
| person.givenName | Ali Maximilian | |
| relation.isOrgUnitOfPublication | d02929e1-2a70-44f0-ae17-7819f587bedd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | d02929e1-2a70-44f0-ae17-7819f587bedd | |
| relation.isParentOrgUnitOfPublication | 17f2dc8e-6e54-4fa8-b5e0-d6415123a93e | |
| relation.isParentOrgUnitOfPublication.latestForDiscovery | 17f2dc8e-6e54-4fa8-b5e0-d6415123a93e |
