Publication:
Capacitive and efficient near-infrared stimulation of neurons via an ultrathin AgBiS2 nanocrystal layer

dc.contributor.coauthorOh, Jae Taek
dc.contributor.coauthorWang, Yongjie
dc.contributor.coauthorKonstantatos, Gerasimos
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorBalamur, Rıdvan
dc.contributor.kuauthorKaratüm, Onuralp
dc.contributor.kuauthorÖnal, Asım
dc.contributor.kuauthorKaleli, Humeyra Nur
dc.contributor.kuauthorPehlivan, Çiğdem
dc.contributor.kuauthorŞahin, Afsun
dc.contributor.kuauthorHasanreisoğlu, Murat
dc.contributor.kuauthorNizamoğlu, Sedat
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.researchcenterKoç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM)
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Health Sciences
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-12-29T09:36:03Z
dc.date.issued2024
dc.description.abstractColloidal nanocrystals (NCs) exhibit significant potential for photovoltaic bioelectronic interfaces because of their solution processability, tunable energy levels, and inorganic nature, lending them chemical stability. Silver bismuth sulfide (AgBiS2) NCs, free from toxic heavy-metal elements (e.g., Cd, Hg, and Pb), particularly offer an exceptional absorption coefficient exceeding 10(5) cm(-1) in the near-infrared (NIR), surpassing many of their inorganic counterparts. Here, we integrated an ultrathin (24 nm) AgBiS2 NC layer into a water-stable photovoltaic bioelectronic device architecture that showed a high capacitive photocurrent of 2.3 mA<middle dot>cm(-2) in artificial cerebrospinal fluid (aCSF) and ionic charges over 10 mu C<middle dot>cm(-2) at a low NIR intensity of 0.5 mW<middle dot>mm(-2). The device without encapsulation showed a halftime of 12.5 years under passive accelerated aging test and did not show any toxicity on neurons. Furthermore, patch-clamp electrophysiology on primary hippocampal neurons under whole-cell configuration revealed that the device elicited neuron firing at intensity levels more than an order of magnitude below the established ocular safety limits. These findings point to the potential of AgBiS2 NCs for photovoltaic retinal prostheses.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue23
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorsThis study was funded by the European Union (ERC, MESHOPTO, 101045289). Views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them. S.N. also acknowledges the Scientific and Technological Research Council of Turkey (TUBITAK) with Project Nos. 121C301, 120E329, and 121E376. The authors gratefully acknowledge use of the services and facilities of the Koc University Research Center for Translational Medicine (KUTTAM), funded by the Republic of Turkey Ministry of Development. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Ministry of Development. G.K. also acknowledges financial support from the Fundacio Joan Ribas Araquistain (FJRA), the Fundacio Privada Cellex, the program CERCA, and "Severo Ochoa" Centre of Excellence CEX2019-000910-S funded by the Spanish State Research Agency.
dc.description.volume16
dc.identifier.doi10.1021/acsami.4c01964
dc.identifier.eissn1944-8252
dc.identifier.issn1944-8244
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85194489843
dc.identifier.urihttps://doi.org/10.1021/acsami.4c01964
dc.identifier.urihttps://hdl.handle.net/20.500.14288/21925
dc.identifier.wos1235241000001
dc.keywordsNanocrystal
dc.keywordsQuantum dot
dc.keywordsSolar cell
dc.keywordsPhotovoltaic
dc.keywordsNeuron
dc.keywordsStimulation
dc.keywordsAgBiS2
dc.keywordsBioelectronic
dc.languageen
dc.publisherAmerican Chemical Society
dc.sourceACS Applied Materials & Interfaces
dc.subjectNanoscience and Nanotechnology
dc.subjectMaterials science
dc.titleCapacitive and efficient near-infrared stimulation of neurons via an ultrathin AgBiS2 nanocrystal layer
dc.typeJournal article
dspace.entity.typePublication
local.contributor.kuauthorBalamur, Rıdvan
local.contributor.kuauthorKaratüm, Onuralp
local.contributor.kuauthorÖnal, Asım
local.contributor.kuauthorKaleli, Humeyra Nur
local.contributor.kuauthorPehlivan, Çiğdem
local.contributor.kuauthorŞahin, Afsun
local.contributor.kuauthorHasanreisoğlu, Murat
local.contributor.kuauthorNizamoğlu, Sedat
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files