Publication:
B-tensor: brain connectome tensor factorization for Alzheimer's disease

dc.contributor.coauthorDurusoy, Göktekin
dc.contributor.coauthorYıldırım, Zerrin
dc.contributor.coauthorDal, Demet Yüksel
dc.contributor.coauthorUlaşoğlu-Yıldız, Çiğdem
dc.contributor.coauthorKurt, Elif
dc.contributor.coauthorBayır, Güneş
dc.contributor.coauthorÖzacar, Erhan
dc.contributor.coauthorÖzarslan, Evren
dc.contributor.coauthorDemirtaş-Tatlıdede, Aslı
dc.contributor.coauthorBilgiç, Başar
dc.contributor.coauthorDemiralp, Tamer
dc.contributor.coauthorGürvit, Hakan
dc.contributor.coauthorAcar, Burak
dc.contributor.departmentDepartment of Physics
dc.contributor.kuauthorKabakçıoğlu, Alkan
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Physics
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokid49854
dc.date.accessioned2024-11-09T12:31:59Z
dc.date.issued2021
dc.description.abstractAD is the highly severe part of the dementia spectrum and impairs cognitive abilities of individuals, bringing economic, societal and psychological burdens beyond the diseased. A promising approach in AD research is the analysis of structural and functional brain connectomes, i.e., sNETs and fNETs, respectively. We propose to use tensor representation (B-tensor) of uni-modal and multi-modal brain connectomes to define a low-dimensional space via tensor factorization. We show on a cohort of 47 subjects, spanning the spectrum of dementia, that diagnosis with an accuracy of 77% to 100% is achievable in a 5D connectome space using different structural and functional connectome constructions in a uni-modal and multi-modal fashion. We further show that multi-modal tensor factorization improves the results suggesting complementary information in structure and function. A neurological assessment of the connectivity patterns identified largely agrees with prior knowledge, yet also suggests new associations that may play a role in the disease progress.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue5
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipTurkish Directorate of Strategy and Budget TAM Project
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)-ARDEB 1003 Programme
dc.description.sponsorshipBogazici University Research Fund Grant
dc.description.versionAuthor's final manuscript
dc.description.volume25
dc.formatpdf
dc.identifier.doi10.1109/JBHI.2020.3023610
dc.identifier.eissn2168-2208
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02822
dc.identifier.issn2168-2194
dc.identifier.linkhttps://doi.org/10.1109/JBHI.2020.3023610
dc.identifier.quartileQ1
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1959
dc.identifier.wos649625200025
dc.keywordsBrain connectomes
dc.keywordsStructure and function
dc.keywordsTensor factorization
dc.keywordsDementia
dc.keywordsAlzheimer’s disease
dc.keywordsfMRI
dc.keywordsDTI
dc.languageEnglish
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.grantno2007K12-873
dc.relation.grantno114E053
dc.relation.grantno16862
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9676
dc.sourceIEEE Journal of Biomedical and Health Informatics
dc.subjectComputer science
dc.subjectMathematical and computational biology
dc.subjectMedical informatics
dc.titleB-tensor: brain connectome tensor factorization for Alzheimer's disease
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-9831-3632
local.contributor.kuauthorKabakçıoğlu, Alkan
relation.isOrgUnitOfPublicationc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isOrgUnitOfPublication.latestForDiscoveryc43d21f0-ae67-4f18-a338-bcaedd4b72a4

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9676.pdf
Size:
3.79 MB
Format:
Adobe Portable Document Format