Publication:
Hidden Markov model training with side information

dc.contributor.coauthorAkman, Arda
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorKozat, Süleyman Serdar
dc.contributor.kuauthorÖzkan, Hüseyin
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.date.accessioned2024-11-09T23:20:28Z
dc.date.issued2012
dc.description.abstractIn this paper, the iterative Expectation-Maximization equations are mathematically derived for Hidden Markov Models (HMM), when there is partial and noisy access to the hidden states. Since the standard HMM is recovered when this partial and noisy access is turned off, our study provides a generalized observation model; and proposes a new model training algorithm within this model. According to the simulation results, our algorithm can improve the performance of the state recognition up to 70% with respect to the “achievable margin”, and also, is robust to different training conditions.
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doi10.1109/SIU.2012.6204441
dc.identifier.isbn9781-4673-0056-8
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-84863442275
dc.identifier.urihttps://doi.org/10.1109/SIU.2012.6204441
dc.identifier.urihttps://hdl.handle.net/20.500.14288/10728
dc.keywordsExpectation maximization
dc.keywordsHidden state
dc.keywordsMarkov model
dc.keywordsNew model
dc.keywordsObservation model
dc.keywordsSide information
dc.keywordsState recognition
dc.keywordsTraining conditions
dc.keywordsSignal processing
dc.keywordsHidden Markov models
dc.language.isotur
dc.publisherIEEE
dc.relation.ispartof2012 20th Signal Processing and Communications Applications Conference, SIU 2012, Proceedings
dc.subjectEngineering
dc.subjectElectrical and electronics engineering
dc.titleHidden Markov model training with side information
dc.title.alternativeEk bi̇lgi̇ i̇le saklı Markov modeli̇ eǧitimi
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorKozat, Süleyman Serdar
local.contributor.kuauthorÖzkan, Hüseyin
local.publication.orgunit1College of Engineering
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit2Department of Electrical and Electronics Engineering
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files