Publication:
Crystal structure and atomic vacancy optimized thermoelectric properties in gadolinium selenides

dc.contributor.coauthorQin, Feiyu
dc.contributor.coauthorNikolaev, Sergey A.
dc.contributor.coauthorSuwardi, Ady
dc.contributor.coauthorWood, Maxwell
dc.contributor.coauthorZhu, Yingcai
dc.contributor.coauthorTan, Xianyi
dc.contributor.coauthorRen, Yang
dc.contributor.coauthorYan, Qingyu
dc.contributor.coauthorHu, Lei
dc.contributor.coauthorSnyder, G. Jeffrey
dc.contributor.departmentDepartment of Chemistry
dc.contributor.departmentDepartment of Chemistry
dc.contributor.kuauthorAydemir, Umut
dc.contributor.kuprofileFaculty Member
dc.contributor.researchcenterKUBAM (Koç University Boron and Advanced Materials Application and Research Center)
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokid58403
dc.date.accessioned2024-11-09T23:18:17Z
dc.date.issued2020
dc.description.abstractThermoelectric materials enable the energy conversion of waste heat into electricity, helpful to relieve global energy crisis. Here, we report a systematic investigation on high-temperature thermoelectric gadolinium selenides, cubic Gd3-xSe4 (x = 0.16, 0.21, and 0.25) and orthorhombic Gd2Se3-y (y = 0.02, 0.06, and 0.08). High energy synchrotron X-ray diffraction and total scattering have been used to investigate the crystallographic and local structures. Atomic-scale clusters of Gd vacancy in the cubic phase are observed by employing the reverse Monte Carlo simulation. For cubic Gd3-xSe4, adjusting Gd vacancy triggers the effect of multiple conduction bands, confirmed by the increase in effective masses. A reasonable peak zT of 0.27 is achieved at 850 K for Gd3-xSe4 (x = 0.16). On the other hand, tuning Se vacancy enables the optimization of electron concentration for the orthorhombic Gd2Se3-y. More significantly, its low deformation potential (Xi = 12 eV) gives rise to enhanced electron mobility and a higher peak zT of 0.54 at 850 K for Gd2Se3-y) , (y = 0.02). Intriguingly, a higher zT of 1.2 at 1200 K is reasonably predicted by quality factor analysis. This work extends the scope of high-temperature thermoelectric materials and facilitates the exploration of novel high-temperature thermoelectric materials.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue23
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipNASA Science Missions Directorate's Radioisotope Power Systems Technology Advancement Program
dc.description.sponsorshipJapan Society for the Promotion of Science (JSPS) KAKENHI [JP 19F19057]
dc.description.sponsorshipInternational Research Fellowship of JSPS
dc.description.sponsorshipChinese Scholarship Council (CSC)
dc.description.sponsorshipSingapore MOE Tier 2 [MOE2018-T2-1-010]
dc.description.sponsorshipSingapore A*STAR Pharos Program [SERC 1527200022]
dc.description.sponsorshipIAF-PP (AME domain) [A19D9a0096]
dc.description.sponsorshipU.S. Department of Energy, Office of Science, Office of Basic Energy Science [DE-AC02-06CH11357] M.W. and G.J.S. acknowledge the support of the NASA Science Missions Directorate's Radioisotope Power Systems Technology Advancement Program. This work was also supported by Japan Society for the Promotion of Science (JSPS) KAKENHI, Grant JP 19F19057. L.H. acknowledges the International Research Fellowship of JSPS. F.Q. acknowledges the Chinese Scholarship Council (CSC) for the scholarship at Tokyo Institute of Technology. Q.Y. acknowledges Singapore MOE Tier 2 under Grant MOE2018-T2-1-010, Singapore A*STAR Pharos Program SERC 1527200022 and IAF-PP (AME domain) A19D9a0096. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science, under Contract DE-AC02-06CH11357.
dc.description.volume32
dc.identifier.doi10.1021/acs.chemmater.0c03581
dc.identifier.eissn1520-5002
dc.identifier.issn0897-4756
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85097829216
dc.identifier.urihttp://dx.doi.org/10.1021/acs.chemmater.0c03581
dc.identifier.urihttps://hdl.handle.net/20.500.14288/10361
dc.identifier.wos599314400027
dc.keywordsThermal-conductivity
dc.keywordsHigh-temperature
dc.keywordsPerformance
dc.languageEnglish
dc.publisherAmerican Chemical Society (ACS)
dc.sourceChemistry of Materials
dc.subjectChemistry, physical
dc.subjectMaterials science, multidisciplinary
dc.titleCrystal structure and atomic vacancy optimized thermoelectric properties in gadolinium selenides
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0003-1164-1973
local.contributor.kuauthorAydemir, Umut
relation.isOrgUnitOfPublication035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isOrgUnitOfPublication.latestForDiscovery035d8150-86c9-4107-af16-a6f0a4d538eb

Files