Publication:
The COF space: materials features, gas adsorption, and separation performances assessed by machine learning

dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.kuauthorPhD Student, Aksu, Gökhan Önder
dc.contributor.kuauthorFaculty Member, Keskin, Seda
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2025-05-22T10:34:40Z
dc.date.available2025-05-22
dc.date.issued2025
dc.description.abstractCovalent organic frameworks (COFs) are promising materials for gas adsorption; however, only a small number of COFs has been studied for a few types of gas separations to date. To unlock the full potential of the COF space, composed of 69 784 different types of materials, we studied the adsorption of five important gas molecules, CO2, CH4, H2, N2, and O2 in COFs at various pressures combining high-throughput molecular simulations and machine learning. Adsorbent performances of COFs were then explored for industrially critical separations, such as CO2/CH4, CO2/H2, CO2/N2, CH4/H2, CH4/N2, and O2/N2. The key structural and chemical properties of the most promising adsorbents were revealed. Our work offers the most extensive dataset produced for COFs in the literature composed of similar to 4.3 million data points for all synthesized and hypothetical COFs' structural, chemical, and energetic features; gas adsorption properties; and selectivities to facilitate the materials discovery.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.openaccessGold OA
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipHORIZON EUROPE European Research Council (no. 101124002)
dc.description.versionPublished Version
dc.identifier.doi10.1021/acsmaterialslett.4c02594
dc.identifier.eissn2639-4979
dc.identifier.embargoNo
dc.identifier.endpage960
dc.identifier.filenameinventorynoIR06256
dc.identifier.issue3
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85217549305
dc.identifier.startpage954
dc.identifier.urihttps://doi.org/10.1021/acsmaterialslett.4c02594
dc.identifier.urihttps://hdl.handle.net/20.500.14288/29396
dc.identifier.volume7
dc.identifier.wos001418171500001
dc.keywordsAdsorbents
dc.keywordsCovalent organic frameworks
dc.language.isoeng
dc.publisherACS Publications
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofACS Materials Letters
dc.relation.openaccessYes
dc.rightsCC BY (Attribution)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMaterials science
dc.titleThe COF space: materials features, gas adsorption, and separation performances assessed by machine learning
dc.typeJournal Article
dspace.entity.typePublication
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication.latestForDiscoveryc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR06256.pdf
Size:
4.68 MB
Format:
Adobe Portable Document Format