Publication:
Machine-learning-based prediction of disability progression in multiple sclerosis: an observational, international, multi-center study

dc.contributor.coauthorDe Brouwer, Edward
dc.contributor.coauthorBecker, Thijs
dc.contributor.coauthorWerthen-Brabants, Lorin
dc.contributor.coauthorDewulf, Pieter
dc.contributor.coauthorIliadis, Dimitrios
dc.contributor.coauthorDekeyser, Cathérine
dc.contributor.coauthorLaureys, Guy
dc.contributor.coauthorVan Wijmeersch, Bart
dc.contributor.coauthorPopescu, Veronica
dc.contributor.coauthorDhaene, Tom
dc.contributor.coauthorDeschrijver, Dirk
dc.contributor.coauthorWaegeman, Willem
dc.contributor.coauthorDe Baets, Bernard
dc.contributor.coauthorStock, Michiel
dc.contributor.coauthorHorakova, Dana
dc.contributor.coauthorPatti, Francesco
dc.contributor.coauthorIzquierdo, Guillermo
dc.contributor.coauthorEichau, Sara
dc.contributor.coauthorGirard, Marc
dc.contributor.coauthorPrat, Alexandre
dc.contributor.coauthorLugaresi, Alessandra
dc.contributor.coauthorGrammond, Pierre
dc.contributor.coauthorKalincik, Tomas
dc.contributor.coauthorAlroughani, Raed
dc.contributor.coauthorGrand’Maison, Francois
dc.contributor.coauthorSkibina, Olga
dc.contributor.coauthorTerzi, Murat
dc.contributor.coauthorLechner-Scott, Jeannette
dc.contributor.coauthorGerlach, Oliver
dc.contributor.coauthorKhoury, Samia J.
dc.contributor.coauthorCartechini, Elisabetta
dc.contributor.coauthorVan Pesch, Vincent
dc.contributor.coauthorSà, Maria José
dc.contributor.coauthorWeinstock-Guttman, Bianca
dc.contributor.coauthorBlanco, Yolanda
dc.contributor.coauthorAmpapa, Radek
dc.contributor.coauthorSpitaleri, Daniele
dc.contributor.coauthorSolaro, Claudio
dc.contributor.coauthorMaimone, Davide
dc.contributor.coauthorSoysal, Aysun
dc.contributor.coauthorIuliano, Gerardo
dc.contributor.coauthorGouider, Riadh
dc.contributor.coauthorCastillo-Triviño, Tamara
dc.contributor.coauthorSánchez-Menoyo, José Luis
dc.contributor.coauthorLaureys, Guy
dc.contributor.coauthorvan der Walt, Anneke
dc.contributor.coauthorOh, Jiwon
dc.contributor.coauthorAguera-Morales, Eduardo
dc.contributor.coauthorAl-Asmi, Abdullah
dc.contributor.coauthorde Gans, Koen
dc.contributor.coauthorFragoso, Yara
dc.contributor.coauthorCsepany, Tunde
dc.contributor.coauthorHodgkinson, Suzanne
dc.contributor.coauthorDeri, Norma
dc.contributor.coauthorAl-Harbi, Talal
dc.contributor.coauthorTaylor, Bruce
dc.contributor.coauthorGray, Orla
dc.contributor.coauthorLalive, Patrice
dc.contributor.coauthorRozsa, Csilla
dc.contributor.coauthorMcGuigan, Chris
dc.contributor.coauthorKermode, Allan
dc.contributor.coauthorSempere, Angel Pérez
dc.contributor.coauthorMihaela, Simu
dc.contributor.coauthorSimo, Magdolna
dc.contributor.coauthorHardy, Todd
dc.contributor.coauthorDecoo, Danny
dc.contributor.coauthorHughes, Stella
dc.contributor.coauthorGrigoriadis, Nikolaos
dc.contributor.coauthorSas, Attila
dc.contributor.coauthorVella, Norbert
dc.contributor.coauthorMoreau, Yves
dc.contributor.coauthorPeeters, Liesbet
dc.contributor.departmentSchool of Medicine
dc.contributor.kuauthorAltıntaş, Ayşe
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.date.accessioned2024-12-29T09:39:28Z
dc.date.issued2024
dc.description.abstractBackground Disability progression is a key milestone in the disease evolution of people with multiple sclerosis (PwMS). Prediction models of the probability of disability progression have not yet reached the level of trust needed to be adopted in the clinic. A common benchmark to assess model development in multiple sclerosis is also currently lacking. Methods Data of adult PwMS with a follow-up of at least three years from 146 MS centers, spread over 40 countries and collected by the MSBase consortium was used. With basic inclusion criteria for quality requirements, it represents a total of 15, 240 PwMS. External validation was performed and repeated five times to assess the significance of the results. Transparent Reporting for Individual Prognosis Or Diagnosis (TRIPOD) guidelines were followed. Confirmed disability progression after two years was predicted, with a confirmation window of six months. Only routinely collected variables were used such as the expanded disability status scale, treatment, relapse information, and MS course. To learn the probability of disability progression, state-of-the-art machine learning models were investigated. The discrimination performance of the models is evaluated with the area under the receiver operator curve (ROC-AUC) and under the precision recall curve (AUC-PR), and their calibration via the Brier score and the expected calibration error. All our preprocessing and model code are available at https://gitlab.com/edebrouwer/ms_benchmark, making this task an ideal benchmark for predicting disability progression in MS. Findings Machine learning models achieved a ROC-AUC of 0.71 ± 0.01, an AUC-PR of 0.26 ± 0.02, a Brier score of 0.1 ± 0.01 and an expected calibration error of 0.07 ± 0.04. The history of disability progression was identified as being more predictive for future disability progression than the treatment or relapses history. Conclusions Good discrimination and calibration performance on an external validation set is achieved, using only routinely collected variables. This suggests machine-learning models can reliably inform clinicians about the future occurrence of progression and are mature for a clinical impact study. Copyright: © 2024 De Brouwer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue7
dc.description.openaccessAll Open Access
dc.description.openaccessGold Open Access
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipThis study was funded by the Research Foundation Flanders (FWO) and the Flemish government through the Onderzoeksprogramma Artificiele Intelligentie (AI) Vlaanderen program (https://www.flandersairesearch.be/en). This funding was awarded to YM, LB, TD, DD, WW, and BDB and funded EBD, TB, LWB, PD, DI, MS, YM, LB, TD, DD, WW, and BDB. EDB was also concomitantly funded by a FWO-SB fellowship (1S98821N - https://fwo.be). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
dc.description.volume3
dc.identifier.doi10.1371/journal.pdig.0000533
dc.identifier.eissn 
dc.identifier.issn2767-3170
dc.identifier.link 
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85201493485
dc.identifier.urihttps://doi.org/10.1371/journal.pdig.0000533
dc.identifier.urihttps://hdl.handle.net/20.500.14288/22998
dc.keywordsMultiple sclerosis
dc.keywordsMagnetic resonance imaging
dc.keywordsClinically isolated syndrome
dc.language.isoeng
dc.publisherPublic Library of Science
dc.relation.grantno 
dc.relation.ispartofPLOS Digital Health
dc.rights 
dc.subjectNeurosciences
dc.titleMachine-learning-based prediction of disability progression in multiple sclerosis: an observational, international, multi-center study
dc.typeJournal Article
dc.type.other 
dspace.entity.typePublication
local.contributor.kuauthorAltıntaş, Ayşe
local.publication.orgunit1SCHOOL OF MEDICINE
local.publication.orgunit2School of Medicine
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublication.latestForDiscoveryd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication.latestForDiscovery17f2dc8e-6e54-4fa8-b5e0-d6415123a93e

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR04663.pdf
Size:
2.97 MB
Format:
Adobe Portable Document Format