Publication:
Soft-robotic ciliated epidermis for reconfigurable coordinated fluid manipulation

dc.contributor.coauthorRen, Ziyu
dc.contributor.coauthorZhang, Mingchao
dc.contributor.coauthorSong, Shanyuan
dc.contributor.coauthorLiu, Zemin
dc.contributor.coauthorHong, Chong
dc.contributor.coauthorWang, Tianlu
dc.contributor.coauthorDong, Xiaoguang
dc.contributor.coauthorHu, Wenqi
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentSchool of Medicine
dc.contributor.kuauthorSitti, Metin
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.date.accessioned2024-11-09T23:14:41Z
dc.date.issued2022
dc.description.abstractThe fluid manipulation capabilities of current artificial cilia are severely handicapped by the inability to reconfigure near-surface flow on various static or dynamically deforming three-dimensional (3D) substrates. To overcome this challenge, we propose an electrically driven soft-robotic ciliated epidermis with multiple independently controlled polypyrrole bending actuators. The beating kinematics and the coordination of multiple actuators can be dynamically reconfigured to control the strength and direction of fluid transportation. We achieve fluid transportation along and perpendicular to the beating directions of the actuator arrays, and toward or away from the substrate. The ciliated epidermises are bendable and stretchable and can be deployed on various static or dynamically deforming 3D surfaces. They enable previously difficult to obtain fluid manipulation functionalities, such as transporting fluid in tubular structures or enhancing fluid transportation near dynamically bending and expanding surfaces.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue34
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipMax Planck Society
dc.description.sponsorshipEuropean Research Council (ERC) [834531]
dc.description.sponsorshipGerman Research Foundation (DFG) Soft Material Robotic Systems (SPP 2100) Program [2197/3-1] This work is funded by the Max Planck Society, European Research Council (ERC) Advanced Grant SoMMoR project with grant no. 834531, and German Research Foundation (DFG) Soft Material Robotic Systems (SPP 2100) Program with grant no. 2197/3-1.
dc.description.volume8
dc.identifier.doi10.1126/sciadv.abq2345
dc.identifier.issn2375-2548
dc.identifier.scopus2-s2.0-85136855459
dc.identifier.urihttps://doi.org/10.1126/sciadv.abq2345
dc.identifier.urihttps://hdl.handle.net/20.500.14288/10190
dc.identifier.wos847345000035
dc.keywordsArtificial cilia
dc.keywordsPerformance
dc.keywordsLife
dc.keywordsMicroactuators
dc.keywordsActuation
dc.keywordsTransport
dc.keywordsBilayer
dc.keywordsDriven
dc.keywordsMotion
dc.keywordsTube
dc.language.isoeng
dc.publisherAmer Assoc Advancement Science
dc.relation.ispartofScience Advances
dc.subjectMultidisciplinary sciences
dc.titleSoft-robotic ciliated epidermis for reconfigurable coordinated fluid manipulation
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorSitti, Metin
local.publication.orgunit1SCHOOL OF MEDICINE
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Mechanical Engineering
local.publication.orgunit2School of Medicine
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files