Publication:
In silico design of MOFs with enhanced CO2 separation performances: role of metal sites

dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.kuauthorAvcı, Gökay
dc.contributor.kuauthorVelioğlu, Sadiye
dc.contributor.kuauthorKeskin, Seda
dc.contributor.kuprofilePost Doctorate Student
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Chemical and Biological Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokidN/A
dc.contributor.yokid200650
dc.contributor.yokid40548
dc.date.accessioned2024-11-09T13:07:09Z
dc.date.issued2019
dc.description.abstractIn this study, grand canonical Monte Carlo simulations were performed to investigate the impact of metal centers on CO2/H-2 mixture adsorption and separation performance of two different metal organic framework (MOF) series, M-HKUST-1 and M-HATGUF, where M represents different metals: Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Ru, and Zn. Results show that the type of metal site affects the CO2 and H-2 uptakes of MOFs, and as a result, adsorbent performance metrics of MOFs such as selectivity, working capacity, regenerability, and adsorbent performance score significantly vary depending on the metal type. Cr-HKUST-1 and Cd-HKUST-1 were identified to have 11% and 38% enhanced CO2/H-2 selectivities in addition to 27% and 60% enhanced adsorbent performance scores compared to original Cu-HKUST-1, respectively. CO2/H-2 selectivity of HATGUF was found to be almost doubled by changing the metal from Cu to Cd in addition to 142% increase in the adsorbent performance score of HATGUF. Our results revealed that changing the metal type of MOFs offers a great opportunity in the way of improving the CO2/H-2 separation performance of materials. Considering the very large number of available MOFs and metals, these results will be useful to design new MOFs by directing the selection of metals that will lead to high-performance adsorbents for CO2 capture.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue46
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Research Council (ERC)
dc.description.sponsorshipERC-2017-Starting Grant
dc.description.sponsorshipEuropean Union (European Union)
dc.description.sponsorshipHorizon 2020
dc.description.versionPublisher version
dc.description.volume123
dc.formatpdf
dc.identifier.doi10.1021/acs.jpcc.9b08581
dc.identifier.eissn1932-7455
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01917
dc.identifier.issn1932-7447
dc.identifier.linkhttps://doi.org/10.1021/acs.jpcc.9b08581
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85074909440
dc.identifier.urihttps://hdl.handle.net/20.500.14288/2559
dc.identifier.wos499737700028
dc.keywordsCharge equilibration
dc.keywordsIsosteric heats
dc.keywordsCarbon-dioxide
dc.keywordsAdsorption
dc.keywordsCapture
dc.keywordsFE
dc.keywordsBTC
dc.keywordsNI
dc.keywordsCU
dc.keywordsSubstitution
dc.languageEnglish
dc.publisherAmerican Chemical Society (ACS)
dc.relation.grantno756489-COSMOS
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8481
dc.sourceJournal of Physical Chemistry C
dc.subjectChemistry
dc.subjectScience and technology
dc.subjectMaterials science
dc.titleIn silico design of MOFs with enhanced CO2 separation performances: role of metal sites
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authorid0000-0002-4812-3611
local.contributor.authorid0000-0001-5968-0336
local.contributor.kuauthorAvcı, Gökay
local.contributor.kuauthorVelioğlu, Sadiye
local.contributor.kuauthorKeskin, Seda
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication.latestForDiscoveryc747a256-6e0c-4969-b1bf-3b9f2f674289

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
8481.pdf
Size:
10.49 MB
Format:
Adobe Portable Document Format