Publication: A novel framework of horizontal-vertical hybrid federated learning for EdgeIoT
| dc.contributor.department | Next Generation and Wireless Communication Laboratory | |
| dc.contributor.kuauthor | Faculty Member, Akan, Özgür Barış | |
| dc.contributor.schoolcollegeinstitute | Laboratory | |
| dc.date.accessioned | 2025-05-22T10:30:55Z | |
| dc.date.available | 2025-05-22 | |
| dc.date.issued | 2025 | |
| dc.description.abstract | This letter puts forth a new hybrid horizontal-vertical federated learning (HoVeFL) for mobile edge computing-enabled Internet of Things (EdgeIoT). In this framework, certain EdgeIoT devices train local models using the same data samples but analyze disparate data features, while the others focus on the same features using non-independent and identically distributed (non-IID) data samples. Thus, even though the data features are consistent, the data samples vary across devices. The proposed HoVeFL formulates the training of local and global models to minimize the global loss function. Performance evaluations on CIFAR-10 and SVHN datasets reveal that the testing loss of HoVeFL with 12 horizontal FL devices and six vertical FL devices is 5.5% and 25.2% higher, respectively, compared to a setup with six horizontal FL devices and 12 vertical FL devices. © 2019 IEEE. | |
| dc.description.fulltext | No | |
| dc.description.harvestedfrom | Manual | |
| dc.description.indexedby | WOS | |
| dc.description.indexedby | Scopus | |
| dc.description.openaccess | All Open Access | |
| dc.description.openaccess | Green Open Access | |
| dc.description.publisherscope | International | |
| dc.description.readpublish | N/A | |
| dc.description.sponsoredbyTubitakEu | N/A | |
| dc.identifier.doi | 10.1109/LNET.2025.3540268 | |
| dc.identifier.embargo | No | |
| dc.identifier.endpage | 87 | |
| dc.identifier.issn | 2576-3156 | |
| dc.identifier.issue | 2 | |
| dc.identifier.quartile | N/A | |
| dc.identifier.scopus | 2-s2.0-85217953921 | |
| dc.identifier.startpage | 83 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14288/29026 | |
| dc.identifier.uri | https://doi.org/10.1109/LNET.2025.3540268 | |
| dc.identifier.volume | 7 | |
| dc.identifier.wos | 001546436400015 | |
| dc.keywords | Edge computing | |
| dc.keywords | Horizontal and vertical | |
| dc.keywords | Hybrid federated learning | |
| dc.keywords | Internet of things | |
| dc.keywords | Non-IID data | |
| dc.language.iso | eng | |
| dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |
| dc.relation.affiliation | Koç University | |
| dc.relation.collection | Koç University Institutional Repository | |
| dc.relation.ispartof | Ieee networking letters | |
| dc.title | A novel framework of horizontal-vertical hybrid federated learning for EdgeIoT | |
| dc.type | Journal Article | |
| dspace.entity.type | Publication | |
| relation.isOrgUnitOfPublication | a5d3121b-8789-4c71-84d3-12bf643bfef9 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | a5d3121b-8789-4c71-84d3-12bf643bfef9 | |
| relation.isParentOrgUnitOfPublication | 20385dee-35e7-484b-8da6-ddcc08271d96 | |
| relation.isParentOrgUnitOfPublication.latestForDiscovery | 20385dee-35e7-484b-8da6-ddcc08271d96 |
