Publication:
A novel framework of horizontal-vertical hybrid federated learning for EdgeIoT

dc.contributor.departmentNext Generation and Wireless Communication Laboratory
dc.contributor.kuauthorFaculty Member, Akan, Özgür Barış
dc.contributor.schoolcollegeinstituteLaboratory
dc.date.accessioned2025-05-22T10:30:55Z
dc.date.available2025-05-22
dc.date.issued2025
dc.description.abstractThis letter puts forth a new hybrid horizontal-vertical federated learning (HoVeFL) for mobile edge computing-enabled Internet of Things (EdgeIoT). In this framework, certain EdgeIoT devices train local models using the same data samples but analyze disparate data features, while the others focus on the same features using non-independent and identically distributed (non-IID) data samples. Thus, even though the data features are consistent, the data samples vary across devices. The proposed HoVeFL formulates the training of local and global models to minimize the global loss function. Performance evaluations on CIFAR-10 and SVHN datasets reveal that the testing loss of HoVeFL with 12 horizontal FL devices and six vertical FL devices is 5.5% and 25.2% higher, respectively, compared to a setup with six horizontal FL devices and 12 vertical FL devices. © 2019 IEEE.
dc.description.fulltextNo
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessAll Open Access
dc.description.openaccessGreen Open Access
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doi10.1109/LNET.2025.3540268
dc.identifier.embargoNo
dc.identifier.endpage87
dc.identifier.issn2576-3156
dc.identifier.issue2
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85217953921
dc.identifier.startpage83
dc.identifier.urihttps://hdl.handle.net/20.500.14288/29026
dc.identifier.urihttps://doi.org/10.1109/LNET.2025.3540268
dc.identifier.volume7
dc.identifier.wos001546436400015
dc.keywordsEdge computing
dc.keywordsHorizontal and vertical
dc.keywordsHybrid federated learning
dc.keywordsInternet of things
dc.keywordsNon-IID data
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofIeee networking letters
dc.titleA novel framework of horizontal-vertical hybrid federated learning for EdgeIoT
dc.typeJournal Article
dspace.entity.typePublication
relation.isOrgUnitOfPublicationa5d3121b-8789-4c71-84d3-12bf643bfef9
relation.isOrgUnitOfPublication.latestForDiscoverya5d3121b-8789-4c71-84d3-12bf643bfef9
relation.isParentOrgUnitOfPublication20385dee-35e7-484b-8da6-ddcc08271d96
relation.isParentOrgUnitOfPublication.latestForDiscovery20385dee-35e7-484b-8da6-ddcc08271d96

Files