Publication:
Two-Dimensional Latent Space Manifold of Brain Connectomes Across the Spectrum of Clinical Cognitive Decline

dc.contributor.coauthorBayir, Gunes
dc.contributor.coauthorDal, Demet Yuksel
dc.contributor.coauthorHari, Emre
dc.contributor.coauthorAy, Ulas
dc.contributor.coauthorGurvit, Hakan
dc.contributor.coauthorKabakcioglu, Alkan
dc.contributor.coauthorAcar, Burak
dc.contributor.departmentDepartment of Physics
dc.contributor.kuauthorFaculty Member, Kabakçıoğlu, Alkan
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2025-09-10T04:58:10Z
dc.date.available2025-09-09
dc.date.issued2025
dc.description.abstractAlzheimer's Disease and Dementia (ADD) progresses along a continuum of cognitive decline, typically from Subjective Cognitive Impairment (SCI) to Mild Cognitive Impairment (MCI) and eventually to dementia. While many studies have focused on classifying these clinical stages, fewer have examined whether brain connectomes encode this continuum in a low-dimensional, interpretable form. Motivated by the hypothesis that structural brain connectomes undergo complex yet compact changes across cognitive decline, we propose a Graph Neural Network (GNN)-based framework that embeds these connectomes into a two-dimensional manifold to capture the evolving patterns of structural connectivity associated with cognitive deterioration. Using attention-based graph aggregation and Principal Component Analysis (PCA), we find that MCI subjects consistently occupy an intermediate position between SCI and ADD, and that the observed transitions align with known clinical biomarkers of ADD pathology. This hypothesis-driven analysis is further supported by the model's robust separation performance, with ROC-AUC scores of 0.93 for ADD vs. SCI and 0.81 for ADD vs. MCI. These findings offer an interpretable and neurologically grounded representation of dementia progression, emphasizing structural connectome alterations as potential markers of cognitive decline.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyPubMed
dc.description.indexedbyScopus
dc.description.openaccessGold OA
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipTurkish Directorate of Strategy and Budget [2007K12-873, TBIdot;TAK-ARDEB 1003, 114E053]; Turkish Directorate of Strategy and Budget under the TAM Project [16862]
dc.description.versionPublished Version
dc.description.volume12
dc.identifier.doi10.3390/bioengineering12080819
dc.identifier.eissn2306-5354
dc.identifier.embargoNo
dc.identifier.filenameinventorynoIR06482
dc.identifier.issue8
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-105014513253
dc.identifier.urihttps://doi.org/10.3390/bioengineering12080819
dc.identifier.urihttps://hdl.handle.net/20.500.14288/30313
dc.identifier.wos001557840700001
dc.keywordsAlzheimer's disease dementia
dc.keywordsbrain connectome
dc.keywordsstructural connectivity
dc.keywordsgraph neural networks
dc.keywordslow-dimensional manifold
dc.keywordsdisease progression
dc.language.isoeng
dc.publisherMdpi
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofBioengineering-basel
dc.relation.openaccessYes
dc.rightsCC BY (Attribution)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectBiotechnology & Applied Microbiology
dc.subjectEngineering, Biomedical
dc.titleTwo-Dimensional Latent Space Manifold of Brain Connectomes Across the Spectrum of Clinical Cognitive Decline
dc.typeJournal Article
dspace.entity.typePublication
relation.isOrgUnitOfPublicationc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isOrgUnitOfPublication.latestForDiscoveryc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR06482.pdf
Size:
6.11 MB
Format:
Adobe Portable Document Format