Publication:
Monolithic shape-programmable dielectric liquid crystal elastomer actuators

dc.contributor.coauthorDavidson, Zoey S.
dc.contributor.coauthorShahsavan, Hamed
dc.contributor.coauthorAghakhani, Amirreza
dc.contributor.coauthorGuo, Yubing
dc.contributor.coauthorHines, Lindsey
dc.contributor.coauthorXia, Yu
dc.contributor.coauthorYang, Shu
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentSchool of Medicine
dc.contributor.kuauthorSitti, Metin
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.date.accessioned2024-11-09T11:47:10Z
dc.date.issued2019
dc.description.abstractSoft robotics may enable many new technologies in which humans and robots physically interact, yet the necessary high-performance soft actuators still do not exist. The optimal soft actuators need to be fast and forceful and have programmable shape changes. Furthermore, they should be energy efficient for untethered applications and easy to fabricate. Here, we combine desirable characteristics from two distinct active material systems: fast and highly efficient actuation from dielectric elastomers and directed shape programmability from liquid crystal elastomers. Via a top-down photoalignment method, we program molecular alignment and localized giant elastic anisotropy into the liquid crystal elastomers. The linearly actuated liquid crystal elastomer monoliths achieve strain rates over 120% per second with an energy conversion efficiency of 20% while moving loads over 700 times the elastomer weight. The electric actuation mechanism offers unprecedented opportunities toward miniaturization with shape programmability, efficiency, and more degrees of freedom for applications in soft robotics and beyond.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue11
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipNational Science Foundation (NSF)
dc.description.sponsorshipAlexander von Humboldt Foundation
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canada (NSERC)
dc.description.sponsorshipMax Planck Society
dc.description.versionPublisher version
dc.description.volume5
dc.identifier.doi10.1126/sciadv.aay0855
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02010
dc.identifier.issn2375-2548
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85075559480
dc.identifier.urihttps://hdl.handle.net/20.500.14288/557
dc.identifier.wos499736100091
dc.keywordsPolymer networks
dc.keywordsTwist
dc.language.isoeng
dc.publisherAmerican Association for the Advancement of Science (AAAS)
dc.relation.grantnoAEFRI-1331583
dc.relation.ispartofScience Advances
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8669
dc.subjectMultidisciplinary sciences
dc.titleMonolithic shape-programmable dielectric liquid crystal elastomer actuators
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorSitti, Metin
local.publication.orgunit1College of Engineering
local.publication.orgunit1SCHOOL OF MEDICINE
local.publication.orgunit2Department of Mechanical Engineering
local.publication.orgunit2School of Medicine
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
8669.pdf
Size:
1.94 MB
Format:
Adobe Portable Document Format