Publication:
A sparse tensor generator with efficient feature extraction

dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentParCoreLab (Parallel and Multicore Computing Laboratory)
dc.contributor.kuauthorResearcher, Torun, Tuğba
dc.contributor.kuauthorUndergraduate Student, Taweel, Ameer
dc.contributor.kuauthorFaculty Member, Erten, Didem Unat
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteLaboratory
dc.date.accessioned2025-09-10T04:55:14Z
dc.date.available2025-09-09
dc.date.issued2025
dc.description.abstractSparse tensor operations are increasingly important in diverse applications such as social networks, deep learning, diagnosis, crime, and review analysis. However, a major obstacle in sparse tensor research is the lack of large-scale sparse tensor datasets. Another challenge lies in analyzing sparse tensor features, which are essential not only for understanding the nonzero pattern but also for selecting the most suitable storage format, decomposition algorithm, and reordering methods. However, due to the large size of real-world tensors, even extracting these features can be computationally expensive without careful optimization. To address these limitations, we have developed a smart sparse tensor generator that replicates key characteristics of real sparse tensors. Additionally, we propose efficient methods for extracting a comprehensive set of sparse tensor features. The effectiveness of our generator is validated through the quality of extracted features and the performance of decomposition on the generated tensors. Both the sparse tensor feature extractor and the tensor generator are open source with all the artifacts available at https://github.com/sparcityeu/FeaTensor and https://github.com/sparcityeu/GenTensor, respectively.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessGold OA
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Research Council (ERC) under the European Union [949587]; Euro HPC Joint Undertaking [956213]
dc.description.versionPublished Version
dc.description.volume11
dc.identifier.doi10.3389/fams.2025.1589033
dc.identifier.eissn2297-4687
dc.identifier.embargoNo
dc.identifier.filenameinventorynoIR06337
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-105013281864
dc.identifier.urihttps://doi.org/10.3389/fams.2025.1589033
dc.identifier.urihttps://hdl.handle.net/20.500.14288/30046
dc.identifier.wos001548322600001
dc.keywordsSparse tensor
dc.keywordsTensor generators
dc.keywordsFeature extraction
dc.keywordsSynthetic data generation
dc.keywordsShared memory parallelism
dc.language.isoeng
dc.publisherFrontiers Media Sa
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofFrontiers in Applied Mathematics and Statistics
dc.relation.openaccessYes
dc.rightsCC BY (Attribution)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMathematics
dc.titleA sparse tensor generator with efficient feature extraction
dc.typeJournal Article
dspace.entity.typePublication
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication623386fd-1805-4dbe-8589-c5e27a3bd9dd
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication20385dee-35e7-484b-8da6-ddcc08271d96
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR06337.pdf
Size:
3.9 MB
Format:
Adobe Portable Document Format