Publication:
Divalent (Cr2+), trivalent (Cr3+), and tetravalent (Cr4+) chromium ion-doped tunable solid-state lasers operating in the near and mid-infrared spectral regions

Placeholder

Departments

School / College / Institute

Program

KU Authors

Co-Authors

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

The chromium ion is among the most widely explored and used laser-active ions. Depending on the charge state of the laser-active chromium ion in the host, tunable chromium-doped lasers can be categorized under three groups as Cr2+, Cr3+, and Cr4+ lasers. In this paper, we provide a comprehensive overview of recent research conducted with chromium ion-doped tunable solid-state lasers, covering primarily the last 2 decades. After an introduction of the key physical parameters of tunable solid-state lasers, recent experimental results obtained with Cr3+, Cr4+, and Cr2+ ion-doped lasers are presented with an emphasis on alexandrite (Cr3+:BeAl2O4), Cr:LiCAF (Cr3+:LiCaAlF6), Cr:LiSAF (Cr3+:LiSrAlF6), Cr:LiSGaF (Cr3+:LiSrGaF6), Cr4+:forsterite (Cr4+:Mg2SiO4), Cr4+:YAG (Cr4+:Y3Al5O12), Cr2+:ZnSe, and Cr2+:ZnS lasers. For each laser system, recent developments involving power scaling, different excitation schemes, continuous-wave power performance, Q-switched/gain-switched operation, mode-locked operation, and emerging scientific/technological/biomedical applications are discussed. The paper is concluded with an overall assessment of these laser media and discussion about possible directions of research in future.

Source

Publisher

Springer Heidelberg

Subject

Optics, Physics

Citation

Has Part

Source

Applied Physics B-Lasers and Optics

Book Series Title

Edition

DOI

10.1007/s00340-021-07735-1

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

0

Downloads

View PlumX Details