Publication:
Optimizing porosity of the catalyst for hydrogen peroxide based thrusters

dc.contributor.coauthorKokal, U.
dc.contributor.coauthorYıldız, Y.
dc.contributor.coauthorBaysal, M.
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorEmerce, Nur Ber
dc.contributor.kuauthorKarabeyoğlu, Mustafa Arif
dc.contributor.kuauthorYıldız, Utku Can
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.date.accessioned2024-12-29T09:41:28Z
dc.date.issued2024
dc.description.abstractThe texture of the catalyst support is a crucial factor for H2O2 decomposition due to the expansion of H2O2 in monopropellant thrusters, which can lead to overpressure and catalyst breakage. Therefore, alumina supports with 5 wt%, 10 wt%, and 15 wt% microcrystalline cellulose templates were studied to create macropores. MIP and SEM analysis showed that microcrystalline cellulose template increases the macropore fraction. Low-concentration H2O2 decomposition experiments revealed that over 10 wt% microcrystalline cellulose prevented catalyst breakage. Additionally, the thermal durability of the catalyst was studied at different calcination temperatures. Alumina with 15 wt% microcrystalline cellulose and a 900 °C calcination temperature exhibited the highest fracture strength and suitable reaction kinetics. The catalysts were tested in high-concentration H2O2 monopropellant thruster. The results demonstrated enhancement in catalyst size retention, pressure stability, and pressure drop. Introducing macropores through microcrystalline cellulose addition overcomes unstable thruster performance and it extends catalyst lifespan in H2O2 monopropellant thrusters’ applications. © 2023 Elsevier B.V.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessN/A
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipThis research was supported by DeltaV Space Technologies Inc. and Koç University Surface Science and Technology Center (KUYTAM) in Istanbul Turkey.
dc.description.volume670
dc.identifier.doi10.1016/j.apcata.2023.119516
dc.identifier.eissn1873-3875
dc.identifier.issn0926-860X
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85178124423
dc.identifier.urihttps://doi.org/10.1016/j.apcata.2023.119516
dc.identifier.urihttps://hdl.handle.net/20.500.14288/23656
dc.identifier.wos1133863500001
dc.keywordsMonopropellant thruster
dc.keywordsHydrogen peroxide decomposition
dc.keywordsAl2O3 support
dc.keywordsMicrocrystalline cellulose
dc.keywordsMeso/macropore structure
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.grantnoDeltaV Space Technologies Inc.
dc.relation.grantnoKUYTAM
dc.relation.grantnoKoç University Surface Science and Technology Center
dc.relation.ispartofApplied Catalysis A: General
dc.subjectMechanical Engineering
dc.titleOptimizing porosity of the catalyst for hydrogen peroxide based thrusters
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorEmerce, Nur Ber
local.contributor.kuauthorYıldız, Utku Can
local.contributor.kuauthorKarabeyoğlu, Mustafa Arif
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Mechanical Engineering
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files