Publication:
Optimizing porosity of the catalyst for hydrogen peroxide based thrusters

dc.contributor.coauthorKokal, U.
dc.contributor.coauthorYıldız, Y.
dc.contributor.coauthorBaysal, M.
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorEmerce, Nur Ber
dc.contributor.kuauthorYıldız, Utku Can
dc.contributor.kuauthorKarabeyoğlu, Mustafa Arif
dc.contributor.otherDepartment of Mechanical Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-12-29T09:41:28Z
dc.date.issued2024
dc.description.abstractThe texture of the catalyst support is a crucial factor for H2O2 decomposition due to the expansion of H2O2 in monopropellant thrusters, which can lead to overpressure and catalyst breakage. Therefore, alumina supports with 5 wt%, 10 wt%, and 15 wt% microcrystalline cellulose templates were studied to create macropores. MIP and SEM analysis showed that microcrystalline cellulose template increases the macropore fraction. Low-concentration H2O2 decomposition experiments revealed that over 10 wt% microcrystalline cellulose prevented catalyst breakage. Additionally, the thermal durability of the catalyst was studied at different calcination temperatures. Alumina with 15 wt% microcrystalline cellulose and a 900 °C calcination temperature exhibited the highest fracture strength and suitable reaction kinetics. The catalysts were tested in high-concentration H2O2 monopropellant thruster. The results demonstrated enhancement in catalyst size retention, pressure stability, and pressure drop. Introducing macropores through microcrystalline cellulose addition overcomes unstable thruster performance and it extends catalyst lifespan in H2O2 monopropellant thrusters’ applications. © 2023 Elsevier B.V.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessN/A
dc.description.publisherscopeInternational
dc.description.sponsorsThis research was supported by DeltaV Space Technologies Inc. and Koç University Surface Science and Technology Center (KUYTAM) in Istanbul Turkey.
dc.description.volume670
dc.identifier.doi10.1016/j.apcata.2023.119516
dc.identifier.eissn1873-3875
dc.identifier.issn0926-860X
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85178124423
dc.identifier.urihttps://doi.org/10.1016/j.apcata.2023.119516
dc.identifier.urihttps://hdl.handle.net/20.500.14288/23656
dc.identifier.wos1133863500001
dc.keywordsMonopropellant thruster
dc.keywordsHydrogen peroxide decomposition
dc.keywordsAl2O3 support
dc.keywordsMicrocrystalline cellulose
dc.keywordsMeso/macropore structure
dc.languageen
dc.publisherElsevier B.V.
dc.relation.grantnoDeltaV Space Technologies Inc.
dc.relation.grantnoKUYTAM
dc.relation.grantnoKoç University Surface Science and Technology Center
dc.sourceApplied Catalysis A: General
dc.subjectMechanical Engineering
dc.titleOptimizing porosity of the catalyst for hydrogen peroxide based thrusters
dc.typeJournal article
dspace.entity.typePublication
local.contributor.kuauthorEmerce, Nur Ber
local.contributor.kuauthorYıldız, Utku Can
local.contributor.kuauthorKarabeyoğlu, Mustafa Arif
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files