Publication: Are we losing accuracy while gaining confidence in induced rules – an assessment of PrIL
| dc.conference.date | AUGUST 20-21, 1995 | |
| dc.conference.location | Montreal | |
| dc.contributor.coauthor | Wallace, W | |
| dc.contributor.department | Department of Business Administration | |
| dc.contributor.kuauthor | Faculty Member, Ali, Özden Gür | |
| dc.contributor.schoolcollegeinstitute | College of Administrative Sciences and Economics | |
| dc.date.accessioned | 2025-10-30T11:13:23Z | |
| dc.date.available | 2025-10-30 | |
| dc.date.issued | 1995 | |
| dc.description.abstract | Probabilistic Inductive Learning (PrIL), is a tree induction algorithm that provides a minimum correct classification level with a specified confidence for each rule in the decision tree, This feature is particularly useful in uncertain environments where decisions are based on the induced rules. This paper provides a concise description of (the extended) PrIL and demonstrates that its performance is as good as best results in the machine learning literature, using datasets from the data repository at UC Irvine. | |
| dc.description.fulltext | Yes | |
| dc.description.harvestedfrom | Manual | |
| dc.description.indexedby | Scopus | |
| dc.description.openaccess | Editöryel Kontrolde bakılacak (Bu alan ilgili koleksiyona geçirilirken boşaltılıp öyle atılacak drop-down menü sonrasında ilgili koleksiyonda gelerek doğru alan seçilecek.) | |
| dc.description.peerreviewstatus | Peer-Reviewed | |
| dc.description.publisherscope | International | |
| dc.description.readpublish | N/A | |
| dc.description.version | Published Version | |
| dc.identifier.embargo | No | |
| dc.identifier.endpage | 14 | |
| dc.identifier.isbn | 9780929280820 | |
| dc.identifier.isbn | 0929280822 | |
| dc.identifier.link | https://cdn.aaai.org/KDD/1995/KDD95-002.pdf | |
| dc.identifier.quartile | N/A | |
| dc.identifier.scopus | 2-s2.0-26544464568 | |
| dc.identifier.startpage | 9 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14288/31297 | |
| dc.keywords | Classification | |
| dc.keywords | Rule reliability | |
| dc.language.iso | eng | |
| dc.publisher | AAAI Press | |
| dc.relation.affiliation | Koç University | |
| dc.relation.collection | Koç University Institutional Repository | |
| dc.relation.ispartof | KDD 1995 - Proceedings of the 1st International Conference on Knowledge Discovery and Data Mining | |
| dc.relation.openaccess | Yes | |
| dc.rights | Editöryel Kontrolde bakılacak (Bu alan ilgili koleksiyona geçirilirken boşaltılıp öyle atılacak drop-down menü sonrasında ilgili koleksiyonda gelerek doğru alan seçilecek.) | |
| dc.rights.uri | Editöryel Kontrolde bakılacak (Bu alan ilgili koleksiyona geçirilirken boşaltılıp öyle atılacak drop-down menü sonrasında ilgili koleksiyonda gelerek doğru alan seçilecek.) | |
| dc.subject | Machine learning | |
| dc.title | Are we losing accuracy while gaining confidence in induced rules – an assessment of PrIL | |
| dc.type | Conference Proceeding | |
| dspace.entity.type | Publication | |
| relation.isOrgUnitOfPublication | ca286af4-45fd-463c-a264-5b47d5caf520 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | ca286af4-45fd-463c-a264-5b47d5caf520 | |
| relation.isParentOrgUnitOfPublication | 972aa199-81e2-499f-908e-6fa3deca434a | |
| relation.isParentOrgUnitOfPublication.latestForDiscovery | 972aa199-81e2-499f-908e-6fa3deca434a |
Files
Original bundle
1 - 1 of 1
