Publication:
A prediction framework for fast sparse triangular solves

dc.contributor.departmentN/A
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorAhmad, Najeeb
dc.contributor.kuauthorYılmaz, Buse
dc.contributor.kuauthorErten, Didem Unat
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofileN/A
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteN/A
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.contributor.yokid219274
dc.date.accessioned2024-11-09T23:14:05Z
dc.date.issued2020
dc.description.abstractSparse triangular solve (SpTRSV) is an important linear algebra kernel, finding extensive uses in numerical and scientific computing. The parallel implementation of SpTRSV is a challenging task due to the sequential nature of the steps involved. This makes it, in many cases, one of the most time-consuming operations in an application. Many approaches for efficient SpTRSV on CPU and GPU systems have been proposed in the literature. However, no single implementation or platform (CPU or GPU) gives the fastest solution for all input sparse matrices. In this work, we propose a machine learning-based framework to predict the SpTRSV implementation giving the fastest execution time for a given sparse matrix based on its structural features. The framework is tested with six SpTRSV implementations on a state-of-the-art CPU-GPU machine (Intel Xeon Gold CPU, NVIDIA V100 GPU). Experimental results, with 998 matrices taken from the SuiteSparse Matrix Collection, show the classifier prediction accuracy of 87% for the fastest SpTRSV algorithm for a given input matrix. Predicted SpTRSV implementations achieve average speedups (harmonic mean) in the range of 1.4-2.7x against the six SpTRSV implementations used in the evaluation.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.sponsorshipAramco Overseas Company
dc.description.sponsorshipSaudiAramco Authors would like to thank Aramco Overseas Company and SaudiAramco for funding this research.
dc.description.volume12247
dc.identifier.doi10.1007/978-3-030-57675-2_33
dc.identifier.eissn1611-3349
dc.identifier.isbn978-3-030-57675-2
dc.identifier.isbn978-3-030-57674-5
dc.identifier.issn0302-9743
dc.identifier.scopus2-s2.0-85090094281
dc.identifier.urihttp://dx.doi.org/10.1007/978-3-030-57675-2_33
dc.identifier.urihttps://hdl.handle.net/20.500.14288/10091
dc.identifier.wos851325900033
dc.keywordsPerformance prediction
dc.keywordsSparse triangular solve
dc.keywordsHeterogeneous systems
dc.keywordsPerformance autotuning parallel solution
dc.languageEnglish
dc.publisherSpringer International Publishing Ag
dc.sourceEuro-Par 2020: Parallel Processing
dc.subjectComputer science
dc.subjectHardware architecture
dc.subjectEngineering
dc.subjectSoftware engineering
dc.titleA prediction framework for fast sparse triangular solves
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-3460-1256
local.contributor.authoridN/A
local.contributor.authorid0000-0002-2351-0770
local.contributor.kuauthorAhmad, Najeeb
local.contributor.kuauthorYılmaz, Buse
local.contributor.kuauthorErten, Didem Unat
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files