Publication:
Non-Abelian geometric phase, Floquet theory and periodic dynamical invariants

dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorMostafazadeh, Ali
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T22:50:13Z
dc.date.issued1998
dc.description.abstractFor a periodic Hamiltonian, periodic dynamical invariants may be used to obtain non-degenerate cyclic states. This observation is generalized to the degenerate cyclic states, and the relation between the periodic dynamical invariants and the Floquet decompositions of the time-evolution operator is elucidated. In particular, a necessary condition for the occurrence of cyclic non-adiabatic non-Abelian geometrical phase is derived. Degenerate cyclic states are obtained for a magnetic dipole interacting with a precessing magnetic field.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue49
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume31
dc.identifier.doi10.1088/0305-4470/31/49/015
dc.identifier.issn0305-4470
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-0032509059
dc.identifier.urihttps://doi.org/10.1088/0305-4470/31/49/015
dc.identifier.urihttps://hdl.handle.net/20.500.14288/6638
dc.identifier.wos77753400015
dc.keywordsNonadiabatic berry phase
dc.keywordsQuantum
dc.keywordsSystems
dc.keywordsAngles
dc.keywordsRepresentation
dc.keywordsHamiltonians
dc.keywordsHolonomy
dc.keywordsSpace
dc.language.isoeng
dc.publisherIop Publishing Ltd
dc.relation.ispartofJournal of Physics A: Mathematical and General
dc.subjectPhysics, multidisciplinary
dc.subjectPhysics, mathematical
dc.titleNon-Abelian geometric phase, Floquet theory and periodic dynamical invariants
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorMostafazadeh, Ali
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files