Publication: Adaptive path-following control for autonomous semi-trailer docking
Program
KU-Authors
KU Authors
Co-Authors
Aydemir, Eren
Advisor
Publication Date
2022
Language
English
Type
Journal Article
Journal Title
Journal ISSN
Volume Title
Abstract
Maneuvering a truck-trailer system while docking is extremely challenging. This article aims to alleviate this problem by presenting an enhanced path-following control framework for autonomous semi-trailer docking. In the proposed system, adaptive controllers that utilize gain scheduling are introduced for forward and reverse path-following tasks in docking maneuvers to increase the robustness and path-following performance. The system includes an improved pure pursuit controller with adaptive look-ahead distance for forward path following; a cascade controller of reverse pure pursuit and a gain-scheduled LQ control for reverse path-following. In the evaluation of the path-following performance of forward and reverse controllers, the closed-loop system of path-following controllers with the truck-trailer kinematic model is simulated in MATLAB/Simulink for various test cases, and the results are compared with those of other studies. Furthermore, different docking scenarios are generated via the cascade path planning algorithm for autonomous semitrailer docking. These are tested with a high degree semi-trailer model within the IPG TruckMaker simulation environment, and with a full truck-trailer vehicle in the test field. The results of both simulations and physical testing clearly demonstrate improvements in terms of the control problem formulation, i.e., the stabilized path-following is obtained with acceptable path-following errors.
Description
Source:
IEEE Transactions on Vehicular Technology
Publisher:
Institute of Electrical and Electronics Engineers (IEEE)
Keywords:
Subject
Engineering, Electrical and electronic engineering, Telecommunications, Transportation science and technology