Publication:
Multi-contrast MRI synthesis with channel-exchanging-network

dc.contributor.coauthorDalmaz, Onat
dc.contributor.coauthorAytekin, İdil
dc.contributor.coauthorDar, Salman Ul Hassan
dc.contributor.coauthorErdem, Erkut
dc.contributor.coauthorÇukur, Tolga
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorErdem, Aykut
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid20331
dc.date.accessioned2024-11-09T23:27:24Z
dc.date.issued2022
dc.description.abstractMagnetic resonance imaging (MRI) is used in many diagnostic applications as it has a high soft-tissue contrast and is a non-invasive medical imaging method. MR signal levels differs according to the parameters T1, T2 and PD that change with respect to the chemical structure of the tissues. However, long scan times might limit acquiring images from multiple contrasts or if the multi-contrasts images are acquired, the contrasts are noisy. To overcome this limitation of MRI, multi-contrast synthesis can be utilized. In this paper, we propose a deep learning method based on Channel-Exchanging-Network (CEN) for multi-contrast image synthesis. Demonstrations are provided on IXI dataset. The proposed model based on CEN is compared against alternative methods based on CNNs and GANs. Our results show that the proposed model achieves superior performance to the competing methods.
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.identifier.doi10.1109/SIU55565.2022.9864937
dc.identifier.isbn9781-6654-5092-8
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85138739644&doi=10.1109%2fSIU55565.2022.9864937&partnerID=40&md5=f03ec72b8cb49773ac35fc75a6c25d52
dc.identifier.scopus2-s2.0-85138739644
dc.identifier.urihttps://dx.doi.org/10.1109/SIU55565.2022.9864937
dc.identifier.urihttps://hdl.handle.net/20.500.14288/11711
dc.keywordsChannel-exchanging-network
dc.keywordsDeep learning
dc.keywordsMulti-contrast image synthesis
dc.keywordsMultimodal fusion
dc.languageEnglish
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.source2022 30th Signal Processing and Communications Applications Conference, SIU 2022
dc.subjectRadiology
dc.subjectNuclear medicine
dc.subjectImaging systems in medicine
dc.titleMulti-contrast MRI synthesis with channel-exchanging-network
dc.title.alternativeYürüme analizi için ivmeölçer verilerinden uzun adım süresi ve basma fazı oranı tespiti
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-6280-8422
local.contributor.kuauthorErdem, Aykut
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files