Publication:
Lagrangian tori in homotopy elliptic surfaces

dc.contributor.coauthorMckinnon, David
dc.contributor.coauthorPark, B. Doug
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorFaculty Member, Etgü, Tolga
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T23:29:22Z
dc.date.issued2005
dc.description.abstractLet E( 1)(K) denote the symplectic four-manifold, homotopy equivalent to the rational elliptic surface, corresponding to a. bred knot K in S-3 constructed by R. Fintushel and R. J. Stern in 1998. We construct a family of nullhomologous Lagrangian tori in E( 1)(K) and prove that infinitely many of these tori have complements with mutually non-isomorphic fundamental groups if the Alexander polynomial of K has some irreducible factor which does not divide t(n) - 1 for any positive integer n. We also show how these tori can be non-isotopically embedded as nullhomologous Lagrangian submanifolds in other symplectic 4-manifolds.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue9
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume357
dc.identifier.doi10.1090/S0002-9947-05-03757-8
dc.identifier.issn0002-9947
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-25144459516
dc.identifier.urihttps://doi.org/10.1090/S0002-9947-05-03757-8
dc.identifier.urihttps://hdl.handle.net/20.500.14288/12052
dc.identifier.wos230031400019
dc.language.isoeng
dc.publisherAmerican Mathematical Society (AMS)
dc.relation.ispartofTransactions of the American Mathematical Society
dc.subjectMathematics
dc.titleLagrangian tori in homotopy elliptic surfaces
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorEtgü, Tolga
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files