Publication:
Migration of single iridium atoms and tri-iridium clusters on MgO surfaces: aberration-corrected STEM imaging and ab initio calculations

dc.contributor.coauthorHan, Chang Wan
dc.contributor.coauthorIddir, Hakim
dc.contributor.coauthorCurtiss, Larry A.
dc.contributor.coauthorBrowning, Nigel D.
dc.contributor.coauthorGates, Bruce C.
dc.contributor.coauthorOrtalan, Volkan
dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.kuauthorUzun, Alper
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Chemical and Biological Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid59917
dc.date.accessioned2024-11-09T23:35:00Z
dc.date.issued2015
dc.description.abstractTo address the challenge of fast, direct atomic-scale visualization of the migration of atoms and clusters on surfaces, we used aberration-corrected scanning transmission electron microscopy (STEM) with high scan speeds (as little as similar to 0.1 s per frame) to visualize the migration of (1) a heavy atom (Ir) on the surface of a support consisting of light atoms, MgO(100), and (2) an Ir-3 cluster on MgO(110). Sequential Z-contrast images elucidate the surface transport mechanisms. Density functional theory (DFT) calculations provided estimates of the migration energy barriers and binding energies of the iridium species to the surfaces. The results show how the combination of fast-scan STEM and DFT calculations allow visualization and fundamental understanding of surface migration phenomena pertaining to supported catalysts and other materials.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue23
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipU.S. Department of Energy [DE-AC05-76RL01830]
dc.description.sponsorshipDOE BES Grant [FG02-04ER15513]
dc.description.sponsorshipDOE Office of Science User Facility [DE-AC02-06CH11357] Microscopy (Aberration-corrected FEI Titan STEM imaging) was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility
dc.description.sponsorshipcomputer time at the Fusion computer facility, Carbon cluster at the Nanoscience and Technology center at Argonne National Laboratory under contract DE-AC02-06CH11357
dc.description.sponsorshipand in part by the Chemical Imaging LDRD Initiative at Pacific Northwest National Laboratory, which is operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract No. DE-AC05-76RL01830. Work at the University of California was supported by DOE BES Grant FG02-04ER15513.
dc.description.volume6
dc.identifier.doi10.1021/acs.jpclett.5b01884
dc.identifier.issn1948-7185
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-84948952996
dc.identifier.urihttp://dx.doi.org/10.1021/acs.jpclett.5b01884
dc.identifier.urihttps://hdl.handle.net/20.500.14288/12453
dc.identifier.wos366008500001
dc.keywordsTransmission electron-microscopy
dc.keywordsBeam-induced deposition
dc.keywordsTotal-energy calculations
dc.keywordsWave basis-set
dc.keywordsGrowth
dc.languageEnglish
dc.publisherAmerican Chemical Society (ACS)
dc.sourceJournal of Physical Chemistry Letters
dc.subjectChemistry, physical and theoretical
dc.subjectNanoscience
dc.subjectNanotechnology
dc.subjectMaterials science
dc.subjectPhysics
dc.subjectAtomic structure
dc.subjectMolecular dynamics
dc.titleMigration of single iridium atoms and tri-iridium clusters on MgO surfaces: aberration-corrected STEM imaging and ab initio calculations
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-7024-2900
local.contributor.kuauthorUzun, Alper
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication.latestForDiscoveryc747a256-6e0c-4969-b1bf-3b9f2f674289

Files