Publication: Generalized eigenvalue problems with specified eigenvalues
dc.contributor.coauthor | Kressner, Daniel | |
dc.contributor.coauthor | Nakic, Ivica | |
dc.contributor.coauthor | Truhar, Ninoslav | |
dc.contributor.department | Department of Mathematics | |
dc.contributor.kuauthor | Mengi, Emre | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.other | Department of Mathematics | |
dc.contributor.schoolcollegeinstitute | College of Sciences | |
dc.contributor.yokid | 113760 | |
dc.date.accessioned | 2024-11-09T23:50:49Z | |
dc.date.issued | 2014 | |
dc.description.abstract | We consider the distance from a (square or rectangular) matrix pencil to the nearest matrix pencil in 2-norm that has a set of specified eigenvalues. We derive a singular value optimization characterization for this problem and illustrate its usefulness for two applications. First, the characterization yields a singular value formula for determining the nearest pencil whose eigenvalues lie in a specified region in the complex plane. For instance, this enables the numerical computation of the nearest stable descriptor system in control theory. Second, the characterization partially solves the problem posed in Boutry et al. (2005, SIAM J. Matrix Anal. Appl., 27, 582-601) regarding the distance from a general rectangular pencil to the nearest pencil with a complete set of eigenvalues. The involved singular value optimization problems are solved by means of Broyden-Fletcher-Goldfarb-Shanno and Lipschitz-based global optimization algorithms. | |
dc.description.indexedby | WoS | |
dc.description.indexedby | Scopus | |
dc.description.issue | 2 | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsorship | European Commision [PIRG-GA-268355] | |
dc.description.sponsorship | TUBITAK(the scientific and technological research council of Turkey) [109T660] The research of E.M. is supported in part by the European Commision grant PIRG-GA-268355 and the TUBITAK(the scientific and technological research council of Turkey) career grant 109T660. | |
dc.description.volume | 34 | |
dc.identifier.doi | 10.1093/imanum/drt021 | |
dc.identifier.eissn | 1464-3642 | |
dc.identifier.issn | 0272-4979 | |
dc.identifier.quartile | Q1 | |
dc.identifier.scopus | 2-s2.0-84898898942 | |
dc.identifier.uri | http://dx.doi.org/10.1093/imanum/drt021 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/14603 | |
dc.identifier.wos | 334676500004 | |
dc.keywords | Matrix pencils | |
dc.keywords | Eigenvalues | |
dc.keywords | Optimization of singular values | |
dc.keywords | Inverse eigenvalue problems | |
dc.keywords | Lipschitz continuity | |
dc.keywords | Sylvester equation | |
dc.keywords | Minimal perturbation | |
dc.keywords | Matrix | |
dc.keywords | Distance | |
dc.keywords | Optimization | |
dc.keywords | Pencils | |
dc.language | English | |
dc.publisher | Oxford University Press (OUP) | |
dc.source | Ima Journal of Numerical Analysis | |
dc.subject | Mathematics | |
dc.subject | Applied mathematics | |
dc.title | Generalized eigenvalue problems with specified eigenvalues | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.authorid | 0000-0003-0788-0066 | |
local.contributor.kuauthor | Mengi, Emre | |
relation.isOrgUnitOfPublication | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe | |
relation.isOrgUnitOfPublication.latestForDiscovery | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe |