Publication:
Outside perfect 8-cycle systems

dc.contributor.coauthorLindner, Curt
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorKüçükçifçi, Selda
dc.contributor.kuauthorYazıcı, Emine Şule
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T23:02:28Z
dc.date.issued2018
dc.description.abstractThe two 4-cycles (a, b, c, d) and (e, f, g, h) are called the outside 4-cycles of the 8-cycle (a, b, c, d, e, f, g, h). Given an 8-cycle system, if we can form a 4-cycle system by choosing two outside 4-cycles from each 8-cycle in the system, then the 8-cycle system is called outside perfect. In this paper we prove that an outside perfect maximum packing of K-n with 8-cycles of order n exists for all n >= 8, except n = 9, for which no such system exists.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume71
dc.identifier.issn2202-3518
dc.identifier.scopus2-s2.0-85046762270
dc.identifier.urihttps://hdl.handle.net/20.500.14288/8291
dc.identifier.wos431776200011
dc.keywordsCycle system
dc.language.isoeng
dc.publisherCentre Discrete Mathematics & Computing
dc.relation.ispartofAustralasian Journal Of Combinatorics
dc.subjectMathematics
dc.titleOutside perfect 8-cycle systems
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorKüçükçifçi, Selda
local.contributor.kuauthorYazıcı, Emine Şule
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files