Publication: Artificial intelligence assisted patient blood and urine droplet pattern analysis for non-invasive and accurate diagnosis of bladder cancer
dc.contributor.coauthor | Bilir, Sukriye | |
dc.contributor.coauthor | Williams, Rhodri | |
dc.contributor.coauthor | Christy, John | |
dc.contributor.coauthor | Tinay, Ilker | |
dc.contributor.department | KUIS AI (Koç University & İş Bank Artificial Intelligence Center) | |
dc.contributor.department | Department of Computer Engineering | |
dc.contributor.department | KUTTAM (Koç University Research Center for Translational Medicine) | |
dc.contributor.department | Graduate School of Health Sciences | |
dc.contributor.department | School of Medicine | |
dc.contributor.kuauthor | Özata, İbrahim Halil | |
dc.contributor.kuauthor | Demir, Çiğdem Gündüz | |
dc.contributor.kuauthor | Gözüaçık, Devrim | |
dc.contributor.kuauthor | Koç, Soner | |
dc.contributor.kuauthor | Akkoç, Yunus | |
dc.contributor.kuauthor | Demir, Ramiz | |
dc.contributor.kuauthor | Öztürk, Deniz Gülfem | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.contributor.schoolcollegeinstitute | GRADUATE SCHOOL OF HEALTH SCIENCES | |
dc.contributor.schoolcollegeinstitute | Research Center | |
dc.contributor.schoolcollegeinstitute | SCHOOL OF MEDICINE | |
dc.date.accessioned | 2025-01-19T10:30:10Z | |
dc.date.issued | 2024 | |
dc.description.abstract | Bladder cancer is one of the most common cancer types in the urinary system. Yet, current bladder cancer diagnosis and follow-up techniques are time-consuming, expensive, and invasive. In the clinical practice, the gold standard for diagnosis remains invasive biopsy followed by histopathological analysis. In recent years, costly diagnostic tests involving the use of bladder cancer biomarkers have been developed, however these tests have high false-positive and false-negative rates limiting their reliability. Hence, there is an urgent need for the development of cost-effective, and non-invasive novel diagnosis methods. To address this gap, here we propose a quick, cheap, and reliable diagnostic method. Our approach relies on an artificial intelligence (AI) model to analyze droplet patterns of blood and urine samples obtained from patients and comparing them to cancer-free control subjects. The AI-assisted model in this study uses a deep neural network, a ResNet network, pre-trained on ImageNet datasets. Recognition and classification of complex patterns formed by dried urine or blood droplets under different conditions resulted in cancer diagnosis with a high specificity and sensitivity. Our approach can be systematically applied across droplets, enabling comparisons to reveal shared spatial behaviors and underlying morphological patterns. Our results support the fact that AI-based models have a great potential for non-invasive and accurate diagnosis of malignancies, including bladder cancer. | |
dc.description.indexedby | WOS | |
dc.description.indexedby | Scopus | |
dc.description.indexedby | PubMed | |
dc.description.issue | 1 | |
dc.description.openaccess | Green Published, gold | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | N/A | |
dc.description.sponsorship | This work was supported by the TUBITAK Newton-Katip Celebi Fund Program Grant Number 216S915. The authors gratefully acknowledge the use of the services and facilities of the Koc University Research Center for Translational Medicine (KUTTAM), funded by the Presidency of Turkey, Presidency of Strategy and Budget. | |
dc.description.volume | 14 | |
dc.identifier.doi | 10.1038/s41598-024-52728-7 | |
dc.identifier.issn | 2045-2322 | |
dc.identifier.quartile | Q1 | |
dc.identifier.scopus | 2-s2.0-85183603709 | |
dc.identifier.uri | https://doi.org/10.1038/s41598-024-52728-7 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/26002 | |
dc.identifier.wos | 1158306700048 | |
dc.keywords | Artificial intelligence | |
dc.keywords | Biomarkers, Tumor | |
dc.keywords | Humans | |
dc.keywords | Reproducibility of results | |
dc.keywords | Urinary bladder | |
dc.keywords | Urinary bladder neoplasms | |
dc.language.iso | eng | |
dc.publisher | Nature Portfolio | |
dc.relation.grantno | TUBITAK Newton-Katip Celebi Fund Program [216S915]; Presidency of Turkey, Presidency of Strategy and Budget | |
dc.relation.ispartof | Scientific Reports | |
dc.subject | Multidisciplinary sciences | |
dc.title | Artificial intelligence assisted patient blood and urine droplet pattern analysis for non-invasive and accurate diagnosis of bladder cancer | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.kuauthor | Demir, Ramiz | |
local.contributor.kuauthor | Koç, Soner | |
local.contributor.kuauthor | Öztürk, Deniz Gülfem | |
local.contributor.kuauthor | Özata, İbrahim Halil | |
local.contributor.kuauthor | Akkoç, Yunus | |
local.contributor.kuauthor | Demir, Çiğdem Gündüz | |
local.contributor.kuauthor | Gözüaçık, Devrim | |
local.publication.orgunit1 | GRADUATE SCHOOL OF HEALTH SCIENCES | |
local.publication.orgunit1 | SCHOOL OF MEDICINE | |
local.publication.orgunit1 | College of Engineering | |
local.publication.orgunit1 | Research Center | |
local.publication.orgunit2 | Department of Computer Engineering | |
local.publication.orgunit2 | KUIS AI (Koç University & İş Bank Artificial Intelligence Center) | |
local.publication.orgunit2 | KUTTAM (Koç University Research Center for Translational Medicine) | |
local.publication.orgunit2 | School of Medicine | |
local.publication.orgunit2 | Graduate School of Health Sciences | |
relation.isOrgUnitOfPublication | 77d67233-829b-4c3a-a28f-bd97ab5c12c7 | |
relation.isOrgUnitOfPublication | 89352e43-bf09-4ef4-82f6-6f9d0174ebae | |
relation.isOrgUnitOfPublication | 91bbe15d-017f-446b-b102-ce755523d939 | |
relation.isOrgUnitOfPublication | 2f870f28-12c9-4b28-9465-b91a69c1d48c | |
relation.isOrgUnitOfPublication | d02929e1-2a70-44f0-ae17-7819f587bedd | |
relation.isOrgUnitOfPublication.latestForDiscovery | 77d67233-829b-4c3a-a28f-bd97ab5c12c7 | |
relation.isParentOrgUnitOfPublication | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 | |
relation.isParentOrgUnitOfPublication | 4c75e0a5-ca7f-4443-bd78-1b473d4f6743 | |
relation.isParentOrgUnitOfPublication | d437580f-9309-4ecb-864a-4af58309d287 | |
relation.isParentOrgUnitOfPublication | 17f2dc8e-6e54-4fa8-b5e0-d6415123a93e | |
relation.isParentOrgUnitOfPublication.latestForDiscovery | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 |
Files
Original bundle
1 - 1 of 1