Publication:
Smooth infinitesimals in the metaphysical foundation of spacetime theories

dc.contributor.departmentDepartment of Philosophy
dc.contributor.kuauthorChen, Lu
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Philosophy
dc.contributor.schoolcollegeinstituteCollege of Social Sciences and Humanities
dc.contributor.yokid329122
dc.date.accessioned2024-11-09T13:19:17Z
dc.date.issued2022
dc.description.abstractI propose a theory of space with infinitesimal regions called smooth infinitesimal geometry (SIG) based on certain algebraic objects (i.e., rings), which regiments a mode of reasoning heuristically used by geometricists and physicists (e.g., circle is composed of infinitely many straight lines). I argue that SIG has the following utilities. (1) It provides a simple metaphysics of vector fields and tangent space that are otherwise perplexing. A tangent space can be considered an infinitesimal region of space. (2) It generalizes a standard implementation of spacetime algebraicism (according to which physical fields exist fundamentally without an underlying manifold) called Einstein algebras. (3) It solves the long-standing problem of interpreting smooth infinitesimal analysis (SIA) realistically, an alternative foundation of spacetime theories to real analysis (Lawvere Cahiers de Topologie et Geometrie Differentielle Categoriques, 21(4), 277-392, 1980). SIA is formulated in intuitionistic logic and is thought to have no classical reformulations (Hellman Journal of Philosophical Logic, 35, 621-651, 2006). Against this, I argue that SIG is (part of) such a reformulation. But SIG has an unorthodox mereology, in which the principle of supplementation fails.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue4
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipN/A
dc.description.versionAuthor's final manuscript
dc.description.volume51
dc.formatpdf
dc.identifier.doi10.1007/s10992-022-09653-9
dc.identifier.eissn1573-0433
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03607
dc.identifier.issn0022-3611
dc.identifier.linkhttps://doi.org/10.1007/s10992-022-09653-9
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85125175907
dc.identifier.urihttps://hdl.handle.net/20.500.14288/3103
dc.identifier.wos761820500001
dc.keywordsContinuum
dc.keywordsSmooth infinitesimal geometry
dc.keywordsSmooth infinitesimal analysis
dc.keywordsVectorial quantity
dc.keywordsTangent space
dc.keywordsEinstein algebras
dc.keywordsNonclassical mereology
dc.languageEnglish
dc.publisherSpringer Nature
dc.relation.grantnoNA
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10465
dc.sourceJournal of Philosophical Logic
dc.subjectLogic
dc.subjectPhilosophy
dc.titleSmooth infinitesimals in the metaphysical foundation of spacetime theories
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-1222-5771
local.contributor.kuauthorChen, Lu
relation.isOrgUnitOfPublication005b6224-491a-49b4-9afc-a4413d87712b
relation.isOrgUnitOfPublication.latestForDiscovery005b6224-491a-49b4-9afc-a4413d87712b

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10465.pdf
Size:
335.73 KB
Format:
Adobe Portable Document Format