Publication:
Thermal stability limits of imidazolium, piperidinium, pyridinium, and pyrrolidinium ionic liquids immobilized on metal oxides

Placeholder

School / College / Institute

Organizational Unit
Organizational Unit

Program

KU Authors

Co-Authors

N/A

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

Twenty-nine different ionic liquids (ILs) consisting of imidazolium, pyridinium, piperidinium, and pyrro-lidinium cations and I-, Cl-, Br-, PF6-, BF4-, [DCA]-, and [NTf2]- anions were immobilized on MgO and SiO2. Their short-term thermal stability limits were investigated by thermogravimetric analysis and compared with those of the corresponding bulk ILs. Data showed that the thermal stability limits of ILs change sig-nificantly when the ILs are immobilized on metal oxides. These changes were evaluated based on the structural interactions determined by infrared (IR) spectroscopy. Systematic structural differences were considered to investigate the factors affecting the thermal stability of bulk ILs, and their counterparts immobilized on MgO and SiO2. These structural changes were the change in the alkyl chain length, the methylation on C2 site in imidazolium ILs, the change in substituent position in the pyridinium ring, the change in the anion, and the change in the IL family. The strongest factor controlling the thermal sta-bility limits of both bulk ILs and their supported counterparts was determined as the anion type. Accordingly, the basicity of the anion and the surface acidity of the metal oxide and their resulting inter-actions were found to have a significant effect on the thermal stability limits. Data presented here offer the opportunity to pick a suitable anion and cation pair according to the metal oxide, so that the sup-ported IL can withstand the desired operation conditions in various applications, such as catalysis or gas separation.

Source

Publisher

Elsevier

Subject

Chemistry, Physical chemistry, Physics, Atomic, molecular and chemical physics

Citation

Has Part

Source

Journal of Molecular Liquids

Book Series Title

Edition

DOI

10.1016/j.molliq.2022.119804

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

2

Views

0

Downloads

View PlumX Details