Publication: Thermal stability limits of imidazolium, piperidinium, pyridinium, and pyrrolidinium ionic liquids immobilized on metal oxides
Program
KU Authors
Co-Authors
N/A
Advisor
Publication Date
2022
Language
English
Type
Journal Article
Journal Title
Journal ISSN
Volume Title
Abstract
Twenty-nine different ionic liquids (ILs) consisting of imidazolium, pyridinium, piperidinium, and pyrro-lidinium cations and I-, Cl-, Br-, PF6-, BF4-, [DCA]-, and [NTf2]- anions were immobilized on MgO and SiO2. Their short-term thermal stability limits were investigated by thermogravimetric analysis and compared with those of the corresponding bulk ILs. Data showed that the thermal stability limits of ILs change sig-nificantly when the ILs are immobilized on metal oxides. These changes were evaluated based on the structural interactions determined by infrared (IR) spectroscopy. Systematic structural differences were considered to investigate the factors affecting the thermal stability of bulk ILs, and their counterparts immobilized on MgO and SiO2. These structural changes were the change in the alkyl chain length, the methylation on C2 site in imidazolium ILs, the change in substituent position in the pyridinium ring, the change in the anion, and the change in the IL family. The strongest factor controlling the thermal sta-bility limits of both bulk ILs and their supported counterparts was determined as the anion type. Accordingly, the basicity of the anion and the surface acidity of the metal oxide and their resulting inter-actions were found to have a significant effect on the thermal stability limits. Data presented here offer the opportunity to pick a suitable anion and cation pair according to the metal oxide, so that the sup-ported IL can withstand the desired operation conditions in various applications, such as catalysis or gas separation.
Description
Source:
Journal of Molecular Liquids
Publisher:
Elsevier
Keywords:
Subject
Chemistry, Physical chemistry, Physics, Atomic, molecular and chemical physics