Publication:
Machine learning-enabled optimization of melt electro-writing three-dimensional printing

dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorChoukri, Abdullah Ahmed
dc.contributor.kuauthorÖzarslan, Olgaç
dc.contributor.kuauthorFarshi, Sara Soltanabadi
dc.contributor.kuauthorDabbagh, Sajjad Rahmani
dc.contributor.kuauthorTaşoğlu, Savaş
dc.contributor.researchcenterKU Arçelik Research Center for Creative Industries (KUAR) / KU Arçelik Yaratıcı Endüstriler Uygulama ve Araştırma Merkezi (KUAR)
dc.contributor.researchcenterKoç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM)
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-12-29T09:36:11Z
dc.date.issued2024
dc.description.abstractMelt electrowriting (MEW) is a solvent-free (i.e., no volatile chemicals), a high-resolution three-dimensional (3D) printing method that enables the fabrication of semi-flexible structures with rigid polymers. Despite its advantages, the MEW process is sensitive to changes in printing parameters (e.g., voltage, printing pressure, and temperature), which can cause fluid column breakage, jet lag, and/or fiber pulsing, ultimately deteriorating the resolution and printing quality. In spite of the commonly used error-and-trial method to determine the most suitable parameters, here, we present a machine learning (ML)-enabled image analysis-based method for determining the optimum MEW printing parameters through an easy-to-use graphical user interface (GUI). We trained five different ML algorithms using 168 MEW 3D print samples, among which the Gaussian process regression ML model yielded 93% accuracy of the variability in the dependent variable, 0.12329 on root mean square error for the validation set and 0.015201 mean square error in predicting line thickness. Integration of ML with a control feedback loop and MEW can reduce the error-and-trial steps prior to the 3D printing process, decreasing the printing time (i.e., increasing the overall throughput of MEW) and material waste (i.e., improving the cost-effectiveness of MEW). Moreover, embedding a trained ML model with the feedback control system in a GUI facilitates a more straightforward use of ML-based optimization techniques in the industrial section (i.e., for users with no ML skills).
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue3
dc.description.openaccessgold
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorsTubitak 2232 International Fellowship for Outstanding Researchers Award, Grant/Award Number: 118C391;Alexander von Humboldt Research Fellowship for Experienced Researchers;Marie Sklodowska-Curie Individual Fellowship, Grant/Award Number: 101003361;Royal Academy Newton-Katip Celebi Transforming Systems, Grant/Award Number: 120N019;Science Academy's Young Scientist Awards Program;Outstanding Young Scientists Awards;Bilim Kahramanlari Dernegi the Young Scientist Award.
dc.description.volume5
dc.identifier.doi10.1002/agt2.495
dc.identifier.eissn2692-4560
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85181258124
dc.identifier.urihttps://doi.org/10.1002/agt2.495
dc.identifier.urihttps://hdl.handle.net/20.500.14288/21973
dc.identifier.wos1136375300001
dc.keywords3D printing
dc.keywordsAdditive manufacturing
dc.keywordsFeedback control
dc.keywordsImage analysis
dc.keywordsMachine learning
dc.keywordsMelt electrowriting
dc.keywordsOptimization
dc.keywordsPolymer
dc.languageen
dc.publisherWiley
dc.relation.grantnoTubitak 2232 International Fellowship for Outstanding Researchers Award [118C391]
dc.relation.grantnoAlexander von Humboldt Research Fellowship for Experienced Researchers
dc.relation.grantnoMarie Sklodowska-Curie Individual Fellowship [101003361]
dc.relation.grantnoRoyal Academy Newton-Katip Celebi Transforming Systems [120N019]
dc.relation.grantnoScience Academy's Young Scientist Awards Program
dc.relation.grantnoOutstanding Young Scientists Awards
dc.relation.grantnoBilim Kahramanlari Dernegi the Young Scientist Award
dc.sourceAggregate
dc.subjectMultidisciplinary chemistry
dc.subjectMaterials science
dc.subjectPhysical chemistry
dc.titleMachine learning-enabled optimization of melt electro-writing three-dimensional printing
dc.typeJournal article
dspace.entity.typePublication
local.contributor.kuauthorChoukri, Abdullah Ahmed
local.contributor.kuauthorÖzarslan, Olgaç
local.contributor.kuauthorFarshi, Sara Soltanabadi
local.contributor.kuauthorDabbagh, Sajjad Rahmani
local.contributor.kuauthorTaşoğlu, Savaş
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR04962.pdf
Size:
1.49 MB
Format:
Adobe Portable Document Format