Publication:
Topological phase transition in quantum-heat-engine cycles

dc.contributor.departmentDepartment of Physics
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorMüstecaplıoğlu, Özgür Esat
dc.contributor.kuauthorYunt, Elif
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.date.accessioned2024-11-09T13:19:02Z
dc.date.issued2018
dc.description.abstractWe explore the signatures of a topological phase transition (TPT) in the work and efficiency of a quantum heat engine, which uses a single-layer topological insulator, stanene, in an external electric field as a working substance. The magnitude of the electric field controls the trivial and topological insulator phases of the stanene. The effect of the TPT is investigated in two types of thermodynamic cycles, with and without adiabatic stages. We examine a quantum Otto cycle for the adiabatic case and an idealized Stirling cycle for the nonadiabatic case. In both cycles, investigations are done for high and low temperatures. It is found that the Otto cycle can distinguish the critical point of the TPT as an extremum point in the work output with respect to applied fields at all temperatures. The Stirling cycle can identify the critical point of the TPT as the maximum work point with respect to the applied fields only at relatively lower temperatures. As temperatures increase toward room temperature, the maximum work point of the Stirling cycle shifts away from the critical point of the TPT. In both cycles, increasing the temperature causes considerable enhancement in work and efficiency from the order of meV to eV.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue5
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU - TÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.sponsorshipEU-COST Action
dc.description.sponsorshipEuropean Union (European Union)
dc.description.sponsorshipHorizon 2020
dc.description.versionPublisher version
dc.description.volume98
dc.identifier.doi10.1103/PhysRevE.98.052124
dc.identifier.eissn2470-0053
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01541
dc.identifier.issn2470-0045
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85057169687
dc.identifier.urihttps://doi.org/10.1103/PhysRevE.98.052124
dc.identifier.wos451005200004
dc.keywordsEpitaxial-growth
dc.keywordsWork
dc.language.isoeng
dc.publisherAmerican Physical Society (APS)
dc.relation.grantno117F097
dc.relation.grantnoCA16221
dc.relation.ispartofPhysical Review E
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8128
dc.subjectPhysics, fluids and plasmas
dc.subjectPhysics, mathematical
dc.titleTopological phase transition in quantum-heat-engine cycles
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorFadaie, Mojde
local.contributor.kuauthorYunt, Elif
local.contributor.kuauthorMüstecaplıoğlu, Özgür Esat
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Physics
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublicationc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscoveryc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
8128.pdf
Size:
862.4 KB
Format:
Adobe Portable Document Format