Publication:
High voltage LiCoO2 cathodes with high purity lithium Bis(oxalate) Borate (LiBOB) for lithium-ion batteries

dc.contributor.coauthorAfyon, Semih
dc.contributor.departmentDepartment of Chemistry
dc.contributor.kuauthorSubaşı, Yaprak
dc.contributor.kuprofileResearcher
dc.contributor.otherDepartment of Chemistry
dc.contributor.researchcenterKoç University Boron and Advanced Materials Application and Research Center (KUBAM) / Koç Üniversitesi Bor ve İleri Malzemeler Uygulama ve Araştırma Merkezi (KUBAM)
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokidN/A
dc.date.accessioned2024-11-10T00:09:31Z
dc.date.issued2022
dc.description.abstractLithium bis(oxalate) borate, LiB(C2O4)(2) (LiBOB) can be used as an electrolyte additive for lithium-ion batteries (LIBs) to prevent structural change and electrolyte decomposition by developing a protective solid electrolyte interphase (SEI) on the cathode surface. However, impurities present in LiBOB result in significant electrochemical performance decays related to higher full cell impedance. Here, a practical purification technique is performed to remove these impurities within the as-synthesized anhydrous LiBOB in which we further add 1 wt % in 1 M LiPF6 in EC:DMC (1:1) electrolytes to achieve a more stable cycling performance for high voltage applications of LiCoO2 (LCO) cathodes. The phase and purity of as-synthesized LiBOB and recrystallized LiBOB is determined by a combination of X-ray powder diffraction (XRPD), Fourier-transform infrared (FTIR) spectra, and scanning electron microscopy (SEM) measurements. The LIB performance with the addition of high purity LiBOB as an electrolyte additive is investigated via galvanostatic charge-discharge cycling, rate capability, and cyclic voltammetry (CV) measurements within a voltage range of 3.0-4.4 V. The cell containing 1 wt % recrystallized LiBOB shows superior cycling performance, rate capability with higher energy density, and Coulombic efficiency in comparison with the reference cell through the formation of a passivation layer on the LCO surface. Thus, for the LiBOB added cell, the crystal structure of LiCoO2 is well-maintained even at higher potentials after 100 cycles according to the ex situ XRPD and SEM analyses. Therefore, high-purity LiBOB improves the interfacial stability of the LCO cathode by inhibiting oxidative decomposition of electrolytes, undesirable structural changes, and cobalt dissolution bringing about safer cycling even at high operation voltages.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue8
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.volume5
dc.identifier.doi10.1021/acsaem.2c01789
dc.identifier.issn2574-0962
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85135916973
dc.identifier.urihttp://dx.doi.org/10.1021/acsaem.2c01789
dc.identifier.urihttps://hdl.handle.net/20.500.14288/17144
dc.identifier.wos834180600001
dc.keywordsLibob
dc.keywordsElectrolyte additive
dc.keywordsSolid electrolyte interface
dc.keywordsLiCoO2
dc.keywordsHigh voltage
dc.keywordsElectrochemical performance
dc.keywordsElectrolyte additives
dc.keywordsCyclic stability
dc.keywordsCarbonate
dc.keywordsIntercalation
dc.keywordsDiffraction
dc.keywordsChallenges
dc.keywordsGraphite
dc.keywordsSalts
dc.languageEnglish
dc.publisherAmerican Chemical Society (ACS)
dc.sourceACS Applied Energy Materials
dc.subjectChemistry, physical and theoretical
dc.subjectEnergy
dc.subjectFuel
dc.subjectMaterials science
dc.titleHigh voltage LiCoO2 cathodes with high purity lithium Bis(oxalate) Borate (LiBOB) for lithium-ion batteries
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-2718-7771
local.contributor.kuauthorSubaşı, Yaprak
relation.isOrgUnitOfPublication035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isOrgUnitOfPublication.latestForDiscovery035d8150-86c9-4107-af16-a6f0a4d538eb

Files