Publication:
State-dependent asset allocation using neural networks

dc.contributor.coauthorBradrania, Reza
dc.contributor.departmentN/A
dc.contributor.kuauthorPirayesh Negab, Davood
dc.contributor.kuprofilePhD Student
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:50:47Z
dc.date.issued2022
dc.description.abstractChanges in market conditions present challenges for investors as they cause performance to deviate from the ranges predicted by long-term averages of means and covariances. The aim of conditional asset allocation strategies is to overcome this issue by adjusting portfolio allocations to hedge changes in the investment opportunity set. This paper proposes a new approach to conditional asset allocation that is based on machine learning; it analyzes historical market states and asset returns and identifies the optimal portfolio choice in a new period when new observations become available. In this approach, we directly relate state variables to portfolio weights, rather than firstly modeling the return distribution and subsequently estimating the portfolio choice. The method captures nonlinearity among the state (predicting) variables and portfolio weights without assuming any particular distribution of returns and other data, without fitting a model with a fixed number of predicting variables to data and without estimating any parameters. The empirical results for a portfolio of stock and bond indices show the proposed approach generates a more efficient outcome compared to traditional methods and is robust in using different objective functions across different sample periods.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue11
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.volume28
dc.identifier.doi10.1080/1351847X.2021.1960404
dc.identifier.eissn1466-4364
dc.identifier.issn1351-847X
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-85112251737
dc.identifier.urihttp://dx.doi.org/10.1080/1351847X.2021.1960404
dc.identifier.urihttps://hdl.handle.net/20.500.14288/14591
dc.identifier.wos684531000001
dc.keywordsPortfolio optimization
dc.keywordsTactical asset allocation
dc.keywordsConditional asset allocation
dc.keywordsPerformance ratio
dc.keywordsMarket state
dc.keywordsMachine learning
dc.keywordsArtificial neural network
dc.keywordsValue-at-risk
dc.keywordsPortfolio optimization
dc.keywordsStock-market
dc.keywordsExpected returns
dc.keywordsMean-variance
dc.keywordsSelection
dc.keywordsModel
dc.keywordsVolatility
dc.keywordsDecisions
dc.keywordsVariables
dc.languageEnglish
dc.publisherTaylor & Francis
dc.sourceEuropean Journal of Finance
dc.subjectBusiness
dc.subjectFinance
dc.titleState-dependent asset allocation using neural networks
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-5019-8356
local.contributor.kuauthorPirayesh Negab, Davood

Files