Publication:
High-yield production of biohybrid microalgae for on-demand cargo delivery

dc.contributor.coauthorAkolpoğlu, Mukrime Birgul
dc.contributor.coauthorBozüyük, Uğur
dc.contributor.coauthorCeylan, Hakan
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.departmentSchool of Medicine
dc.contributor.kuauthorDoğan, Nihal Olcay
dc.contributor.kuauthorKızılel, Seda
dc.contributor.kuauthorSitti, Metin
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.date.accessioned2024-11-09T13:12:34Z
dc.date.issued2020
dc.description.abstractBiohybrid microswimmers exploit the swimming and navigation of a motile microorganism to target and deliver cargo molecules in a wide range of biomedical applications. Medical biohybrid microswimmers suffer from low manufacturing yields, which would significantly limit their potential applications. In the present study, a biohybrid design strategy is reported, where a thin and soft uniform coating layer is noncovalently assembled around a motile microorganism.Chlamydomonas reinhardtii(a single-cell green alga) is used in the design as a biological model microorganism along with polymer-nanoparticle matrix as the synthetic component, reaching a manufacturing efficiency of approximate to 90%. Natural biopolymer chitosan is used as a binder to efficiently coat the cell wall of the microalgae with nanoparticles. The soft surface coating does not impair the viability and phototactic ability of the microalgae, and allows further engineering to accommodate biomedical cargo molecules. Furthermore, by conjugating the nanoparticles embedded in the thin coating with chemotherapeutic doxorubicin by a photocleavable linker, on-demand delivery of drugs to tumor cells is reported as a proof-of-concept biomedical demonstration. The high-throughput strategy can pave the way for the next-generation generation microrobotic swarms for future medical active cargo delivery tasks.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue16
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipKoç University Seed Fund
dc.description.sponsorshipMax Planck Society
dc.description.sponsorshipKoç University Visiting Scholar Program
dc.description.versionPublisher version
dc.description.volume7
dc.identifier.doi10.1002/advs.202001256
dc.identifier.eissn2198-3844
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02304
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85087297304
dc.identifier.urihttps://hdl.handle.net/20.500.14288/2907
dc.identifier.wos544711800001
dc.keywordsMicrorobots
dc.keywordsBiohybrids
dc.keywordsMicroswimmers
dc.keywordsChitosan
dc.keywordsChlamydomonas reinhardtii
dc.keywordsMicroalgae
dc.keywordsDrug delivery
dc.keywordsLight-triggered drug release
dc.language.isoeng
dc.publisherWiley
dc.relation.grantnoSF.00074
dc.relation.ispartofAdvanced Science
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8968
dc.subjectChemistry, multidisciplinary
dc.subjectNanoscience and nanotechnology
dc.subjectMaterials science, multidisciplinary
dc.titleHigh-yield production of biohybrid microalgae for on-demand cargo delivery
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorKızılel, Seda
local.contributor.kuauthorDoğan, Nihal Olcay
local.contributor.kuauthorSitti, Metin
local.publication.orgunit1College of Engineering
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit1SCHOOL OF MEDICINE
local.publication.orgunit2Department of Chemical and Biological Engineering
local.publication.orgunit2Department of Mechanical Engineering
local.publication.orgunit2School of Medicine
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
8968.pdf
Size:
1.23 MB
Format:
Adobe Portable Document Format