Publication:
A compressed sensing framework for efficient dissection of neural circuits

dc.contributor.coauthorLee, Jeffrey B.
dc.contributor.coauthorYonar, Abdullah
dc.contributor.coauthorHallacy, Timothy
dc.contributor.coauthorShen, Ching-Han
dc.contributor.coauthorMilloz, Josselin
dc.contributor.coauthorSrinivasan, Jagan
dc.contributor.coauthorRamanathan, Sharad
dc.contributor.departmentDepartment of Physics
dc.contributor.kuauthorKocabaş, Aşkın
dc.contributor.otherDepartment of Physics
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokid227753
dc.date.accessioned2024-11-09T11:46:29Z
dc.date.issued2019
dc.description.abstractA fundamental question in neuroscience is how neural networks generate behavior. The lack of genetic tools and unique promoters to functionally manipulate specific neuronal subtypes makes it challenging to determine the roles of individual subtypes in behavior. We describe a compressed sensing-based framework in combination with non-specific genetic tools to infer candidate neurons controlling behaviors with fewer measurements than previously thought possible. We tested this framework by inferring interneuron subtypes regulating the speed of locomotion of the nematode Caenorhabditis elegans. We developed a real-time stabilization microscope for accurate long-term, high-magnification imaging and targeted perturbation of neural activity in freely moving animals to validate our inferences. We show that a circuit of three interconnected interneuron subtypes, RMG, AVB and SIA control different aspects of locomotion speed as the animal navigates its environment. Our work suggests that compressed sensing approaches can be used to identify key nodes in complex biological networks.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue1
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipUS National Institutes of Health (NIH) Directors Pioneer award
dc.description.sponsorshipNIH
dc.description.sponsorshipNSF-Simons Center for Mathematical and Statistical Analysis of Biology at Harvard University
dc.description.sponsorshipNSF
dc.description.sponsorshipHarvard FAS Quantitative Biology Initiative
dc.description.sponsorshipHarvard University - Koc University Visiting Scholar Program
dc.description.versionAuthor's final manuscript
dc.description.volume16
dc.formatpdf
dc.identifier.doi10.1038/s41592-018-0233-6
dc.identifier.eissn1548-7105
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01904
dc.identifier.issn1548-7091
dc.identifier.linkhttps://doi.org/10.1038/s41592-018-0233-6
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85058923603
dc.identifier.urihttps://hdl.handle.net/20.500.14288/526
dc.identifier.wos454162400040
dc.keywordsCaenorhabditis-elegans
dc.keywordsRegression shrinkage
dc.keywordsC.elegans
dc.keywordsNavigation
dc.keywordsBehaviors
dc.keywordsSelection
dc.keywordsSystem
dc.keywordsDriven
dc.languageEnglish
dc.publisherNature Publishing Group (NPG)
dc.relation.grantnoDP1OD008197
dc.relation.grantnoR01DC016058
dc.relation.grantnoDMS-1764269
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8584
dc.sourceNature Methods
dc.subjectBiochemical research methods
dc.titleA compressed sensing framework for efficient dissection of neural circuits
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-6930-1202
local.contributor.kuauthorKocabaş, Aşkın
relation.isOrgUnitOfPublicationc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isOrgUnitOfPublication.latestForDiscoveryc43d21f0-ae67-4f18-a338-bcaedd4b72a4

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
8584.pdf
Size:
996.48 KB
Format:
Adobe Portable Document Format