Publication:
Classical and quantum orbital correlations in molecular electronic states

dc.contributor.coauthorVedral, Vlatko
dc.contributor.departmentDepartment of Physics
dc.contributor.departmentDepartment of Chemistry
dc.contributor.kuauthorMüstecaplıoğlu, Özgür Esat
dc.contributor.kuauthorYurtsever, İsmail Ersin
dc.contributor.kuauthorPusuluk, Onur
dc.contributor.kuauthorYeşiller, Mahir Hüseyin
dc.contributor.kuauthorTorun, Gökhan
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileOther
dc.contributor.otherDepartment of Physics
dc.contributor.otherDepartment of Chemistry
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid1674
dc.contributor.yokid7129
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T12:25:13Z
dc.date.issued2022
dc.description.abstractThe quantum superposition principle has been extensively utilized in the quantum mechanical description of bonding phenomenon. It explains the emergence of delocalized molecular orbitals and provides a recipe for the construction of near-exact electronic wavefunctions. On the other hand, its existence in composite systems may give rise to nonclassical correlations that are regarded as a resource in quantum technologies. Here, we approach the electronic ground states of three prototypical molecules in the light of the framework set by fermionic information theory. By introducing the notion of orbital discord, we additively decompose the pairwise orbital correlations into their classical and quantum parts in the presence of superselection rules. We observe that quantum orbital correlations can be stronger than classical orbital correlations though not often. Moreover, quantum orbital correlations can survive even in the absence of orbital entanglement depending on the symmetries of the constituent orbitals. Finally, we demonstrate that orbital entanglement would be underestimated if the orbital density matrices were treated as qubit states.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.versionPublisher version
dc.description.volume24
dc.formatpdf
dc.identifier.doi10.1088/1367-2630/ac932b
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR04023
dc.identifier.issn1367-2630
dc.identifier.linkhttps://doi.org/10.1088/1367-2630/ac932b
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85140261101
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1556
dc.identifier.wos868363000001
dc.keywordsQuantum entanglement
dc.keywordsQuantum discord
dc.keywordsFermionic information theory
dc.keywordsMolecular orbitals
dc.keywordsOrbital entanglement
dc.keywordsOrbital discord
dc.keywordsFermionic super-selection rules
dc.languageEnglish
dc.publisherInstitute of Physics (IOP) Publishing
dc.relation.grantno120F089
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10903
dc.sourceNew Journal of Physics
dc.subjectPhysics, multidisciplinary
dc.titleClassical and quantum orbital correlations in molecular electronic states
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-9134-3951
local.contributor.authorid0000-0001-9245-9596
local.contributor.authoridN/A
local.contributor.authoridN/A
local.contributor.authoridN/A
local.contributor.kuauthorMüstecaplıoğlu, Özgür Esat
local.contributor.kuauthorYurtsever, İsmail Ersin
local.contributor.kuauthorPusuluk, Onur
local.contributor.kuauthorYeşiller, Mahir Hüseyin
local.contributor.kuauthorTorun, Gökhan
relation.isOrgUnitOfPublicationc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isOrgUnitOfPublication035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isOrgUnitOfPublication.latestForDiscovery035d8150-86c9-4107-af16-a6f0a4d538eb

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10903.pdf
Size:
3.17 MB
Format:
Adobe Portable Document Format