Publication:
Genetically programmable optical random neural networks

dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorFaculty Member, Teğin, Uğur
dc.contributor.kuauthorPhD Student, Çarpınlıoğlu, Bora
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2025-09-10T04:55:27Z
dc.date.available2025-09-09
dc.date.issued2025
dc.description.abstractToday, machine learning tools, particularly artificial neural networks, have become crucial for diverse applications. However, current digital computing tools to train and deploy artificial neural networks often struggle with massive data sizes and high power consumptions. Optical computing provides inherent parallelism accommodating high-resolution input data and performs fundamental operations with passive optical components. However, most of the optical computing platforms suffer from relatively low accuracies for machine learning tasks due to fixed connections while avoiding complex and sensitive techniques. Here, we demonstrate a genetically programmable yet simple optical neural network to achieve high performances with optical random projection. By programming the orientation of the scattering medium which acts as a random projection kernel and only using 1% of the search space, our technique finds an optimum kernel and improves initial test accuracies by 8-41% for various machine learning tasks. Through numerical simulations and experiments on a number of datasets, we validate the programmability and high-resolution sample processing capabilities of our design. Our optical computing method presents a promising approach to achieve high performance in optical neural networks with a simple and scalable design.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessGold OA
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK) [123E308]
dc.description.versionPublished Version
dc.description.volume8
dc.identifier.doi10.1038/s42005-025-02255-2
dc.identifier.embargoNo
dc.identifier.filenameinventorynoIR06356
dc.identifier.issn2399-3650
dc.identifier.issue1
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-105014599217
dc.identifier.urihttps://doi.org/10.1038/s42005-025-02255-2
dc.identifier.urihttps://hdl.handle.net/20.500.14288/30077
dc.identifier.wos001556082900001
dc.keywordsExtreme Learning
dc.keywordsMachinedeep
dc.language.isoeng
dc.publisherNature Portfolio
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofCommunications Physics
dc.relation.openaccessYes
dc.rightsCC BY-NC-ND (Attribution-NonCommercial-NoDerivs)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectPhysics
dc.titleGenetically programmable optical random neural networks
dc.typeJournal Article
dspace.entity.typePublication
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery434c9663-2b11-4e66-9399-c863e2ebae43

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR06356.pdf
Size:
1.16 MB
Format:
Adobe Portable Document Format